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REWRITE PREVENTION IN A VARIABLE 
RESISTANCE MEMORY 

This application is a continuation of application Ser. No. 
10/680,161, ?led Oct. 8, 2003, noW U.S. Pat. No. 6,882,578, 
Which is a divisional of application Ser. No. 10/035,197, 
?led Jan. 4, 2002, noW U.S. Pat. No. 6,909,656, the subject 
matter of each are incorporated by reference herein. 

FIELD OF INVENTION 

The present invention relates to integrated memory cir 
cuits. More speci?cally, it relates to a method for reading a 
programmable conductor random access memory (PCRAM) 
cell. 

BACKGROUND OF THE INVENTION 

Dynamic random access memory (DRAM) integrated 
circuit arrays have existed for more than thirty years and 
their dramatic increase in storage capacity has been achieved 
through advances in semiconductor fabrication technology 
and circuit design technology. The tremendous advances in 
these tWo technologies have also achieved higher levels of 
integration that permit dramatic reductions in memory array 
siZe and cost, as Well as increased process yield. 

FIG. 1 is a schematic diagram of a DRAM memory cell 
100 comprising an access transistor 101 and a capacitor 102. 
The capacitor 102, Which is coupled to a Vcc/2 potential 
source and the transistor 101, stores one bit of data in the 
form of a charge. Typically, a charge of one polarity (e.g., a 
charge corresponding to a potential difference across the 
capacitor 102 of +Vcc/2) is stored in the capacitor 102 to 
represent a binary “1” While a charge of the opposite polarity 
(e. g., a charge corresponding to a potential difference across 
the capacitor 102 of —Vcc/2) represents a binary “0.” The 
gate of the transistor 101 is coupled to a Word line 103, 
thereby permitting the Word line 103 to control Whether the 
capacitor 102 is conductively coupled via the transistor 101 
to a bit line 104. The default state of each Word line 103 is 
at ground potential, Which causes the transistor 101 to be 
switched off, thereby electrically isolating capacitor 102. 
One of the draWbacks associated With DRAM cells 100 is 

that the charge on the capacitor 102 may naturally decay 
over time, even if the capacitor 102 remains electrically 
isolated. Thus, DRAM cells 100 require periodic refreshing. 
Additionally, as discussed beloW, refreshing is also required 
after a memory cell 100 has been accessed, for example, as 
part of a read operation. 

FIG. 2 illustrates a memory device 200 comprising a 
plurality of memory arrays 150a, 1501). (Generally, in the 
draWings, elements having the same numerical value are of 
the same type. For example, sense ampli?ers 300a and 30019 
in FIG. 2 have identical circuitry to sense ampli?er 300 of 
FIG. 3. A loWer case alphabetic su?ix is generally used to 
discriminate betWeen different units of the same type. HoW 
ever, upper case pre?xes, such as “N” and “P” may denote 
different circuitry associated With negative or positive typed 
variants.) Each memory array 150a, 1501) includes a plural 
ity of memory cells l00ail00d, l00eil00h arranged by 
tiling a plurality of memory cells 100 together so that the 
memory cells 100 along any given bit line 104a, 104a‘, 
104b, 1041)‘ do not share a common Word line l03ail03d. 
Conversely, the memory cells 100 along any Word line 103 
do not share a common bit line 104a, 104a‘, 104b, 1041)‘. 
Each memory array has its oWn set of bit lines. For example, 
memory array 150a includes bit lines 104a, 104b, While 
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memory array 150!) includes bit lines 104a‘, 1041)‘. The bit 
lines from each adjacent pair of memory arrays 150a, 1501) 
are coupled to a common sense ampli?er 300a, 3001). For 
example, bit lines 104a, 10411‘ are coupled to sense ampli?er 
300a, While bit lines 104b, 1041)‘ are coupled to sense 
ampli?er 30019. As explained beloW, the sense ampli?ers 
300a, 3001) are used to conduct the sense/refresh portion 
When a memory cell l00ail00h is read. 

Reading a DRAM memory cell comprises the operations 
of accessing and sensing/refreshing. 
The purpose of the access operation is to transfer charge 

stored on the capacitor 102 to the bit line 104 associated With 
the memory cell 100. The access operation begins by 
precharging each bit line 104a, 104a‘, 104b, 1041)‘ to a 
predetermined potential (e.g., Vcc/2) by coupling each bit 
line 104a, 1041) to a potential source (not illustrated). Each 
bit line 104a, 1041) is then electrically disconnected. The bit 
lines 104a, 104a‘, 104b, 1041)‘ Will ?oat at the predetermined 
potential due to the inherent capacitance of the bit lines 
104a, 104a‘, 104b, 1041)‘. Subsequently, the Word line (e.g., 
103a) associated With a memory cell being read (e.g., 100a) 
is activated by raising its potential to a level Which causes 
each transistor 101a, 101e coupled to the Word line 10311 to 
gate. It should be noted that due to inherent parasitic 
capacitance betWeen bit lines 104 and Word lines 103, 
activation of a Word line 103 Will cause the potential at each 
associated bit line 104 to increase slightly. HoWever, in 
typical DRAM systems, the magnitude of this potential 
change is insigni?cant in comparison to the magnitude of the 
potential change on the bit lines due to charge sharing. 
Therefore, With respect to DRAM systems only, further 
discussion regarding the effect of parasitic capacitance is 
omitted. 

Activation of the Word line 103a causes each capacitor 
102a, 102e of each memory cell 100a, 100e coupled to that 
Word line 10311 to share its charge With its associated bit line 
104a, 1041). The bit lines 104a‘, 1041)‘ in the other array 150!) 
remain at the pre-charge potential. The charge sharing 
causes the bit line 104a, 1041) potential to either increase or 
decrease, depending upon the charge stored in the capacitors 
102a, 102e. Since only the bit lines 104a, 1041) of one 
memory array has its potential altered, at each sense ampli 
?er 300a, 300b, a differential potential develops betWeen the 
bit lines 104a, 1041) associated With the activated Word line 
103a and the other bit lines 104a‘, 1041)‘ associated With the 
same sense ampli?er 300a, 3001). Thus, the access operation 
causes the bit lines 104a, 1041) associated With the cell 100a 
being read to have a potential Which is either greater than or 
less than the pre-charged voltage. HoWever, the change in 
potential is small and requires ampli?cation before it can be 
used. 
The sense/refresh operation serves tWo purposes. First, 

the sense/refresh operation ampli?es the small change in 
potential to the bit line coupled to the cell Which Was 
accessed. If the bit line has a potential Which is loWer than 
the pre-charge potential, the bit line Will be driven to ground 
during sensing. Alternatively, if the bit line has a potential 
Which is higher than the pre-charge potential, the bit line Will 
be driven to Vcc during sensing. The second purpose of the 
sense/refresh operation is to restore the state of the charge in 
the capacitor of the accessed cell to the state it had prior to 
the access operation. This step is required since the access 
operation diluted the charge stored on the capacitor by 
sharing it With the bit line. 

FIG. 3 is a detailed illustration of a sense ampli?er 300, 
Which comprises a N-sense amp 310N and a P-sense amp 
portion 3101’. The N-sense amp 310N and the P-sense amp 
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310P include nodes NLAT* and ACT, respectively. These 
nodes are coupled to controllable potential sources (not 
illustrated). Node NLAT* is initially biased to the pre-charge 
potential of the bit lines 104 (e.g., Vcc/2) While node ACT 
is initially biased to ground. In this initial state, the transis 
tors 3014304 of the N- and P-sense amps 310N, 310P are 
switched off. The sense/refresh operation is a tWo phased 
operation in Which the N-sense amp 310N is triggered 
before the P-sense amp 310P. 

The N-sense amp 310N is triggered by bringing the 
potential at node NLAT* from the pre-charge potential (e.g., 
Vcc/ 2) toWards ground potential. As the potential difference 
betWeen node NLAT* and the bit lines 104a, 104a‘, 104b, 
1041)‘ approach the threshold potential of NMOS transistors 
301, 302, the transistor With the gate coupled to the higher 
voltage bit line begins to conduct. This causes the loWer 
voltage bit line to discharge toWards the voltage of the 
NLAT* node. Thus, When node NLAT* reaches ground 
potential, the loWer voltage bit line Will also reach ground 
potential. The other NMOS transistor never conducts since 
its gate is coupled to the loW voltage digit line being 
discharged toWards ground. 

The P-sense amp 310P is triggered (after the N-sense amp 
310N has been triggered) by bringing the potential at node 
ACT from ground toWards Vcc. As the potential of the loWer 
voltage bit line approaches ground (caused by the earlier 
triggering of the N-sense amp 310N), the PMOS transistor 
With its gate coupled to the loWer potential bit line Will begin 
to conduct. This causes the initially higher potential bit line 
to be charged to a potential of Vcc. After both the N- and 
P-sense amps 310N, 310P have been triggered, the higher 
voltage bit line has its potential elevated to Vcc While the 
loWer potential bit line has it potential reduced to ground. 
Thus, the process of triggering both sense amps 310N, 310P 
ampli?es the potential difference created by the access 
operation to a level suitable for use in digital circuits. In 
particular, the bit line 104a associated With the memory cell 
100a being read is driven from the pre-charge potential of 
Vcc/2 to ground if the memory cell 100a stored a charge 
corresponding to a binary 0, or to Vcc if the memory cell 
100a stored a charge corresponding to a binary 1, thereby 
permitting a comparator (or differential ampli?er) 350a 
coupled to bit lines 104a, 10411‘ to output a binary 0 or 1 
consistent With the data stored in the cell 10011 on signal line 
351. Additionally, the charge initially stored on the capacitor 
10211 of the accessed cell is restored to its pre-access state. 

Efforts continue to identify other forms of memory ele 
ments for use in memory cells. Recent studies have focused 
on resistive materials that can be programmed to exhibit 
either high or loW stable ohmic states. A programmable 
resistance element of such material could be programmed 
(set) to a high resistive state to store, for example, a binary 
“1” data bit or programmed to a loW resistive state to store 
a binary “0” data bit. The stored data bit could then be 
retrieved by detecting the magnitude of a readout current 
sWitched through the resistive memory element by an access 
device, thus indicating the stable resistance state it had 
previously been programmed to. 

Recently chalcogenide glasses fabricated With solid elec 
trolyte such as a metal doped chalcogenide have been 
investigated as data storage memory cells for use in memory 
devices, such as DRAM memory devices. US. Pat. Nos. 
5,761,115, 5,896,312, 5,914,893, and 6,084,796 all describe 
this technology and are incorporated herein by reference. 
The storage cells are called programmable conductor cells 
(alternatively, they are also knoWn as programmable metal 
liZation cells). One characteristic of such a cell is that it 
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typically includes solid metal electrolyte such as a metal 
doped chalcogenide and a cathode and anode spaced apart 
on a surface of the fast ion conductor. Application of a 
voltage across the cathode and anode causes groWth of a 
metal dendrite Which changes the resistance and capacitance 
of the cell Which can then be used to store data. 
One particularly promising programmable, bi-stable 

resistive material is an alloy system including GezSezAg. A 
memory element comprised of a chalcogenide material has 
a natural stable high resistive state but can be programmed 
to a loW resistance state by passing a current pulse from a 
voltage of suitable polarity through the cell. This causes a 
programmable conductor, also knoWn as a dendrite, to groW 
betWeen the anode and cathode Which loWers the cell 
resistance. A chalcogenide memory element is simply Writ 
ten over by the appropriate current pulse and voltage polar 
ity (reverse of that Which Writes the cell to a loW resistance 
state) to reprogram it, and thus does not need to be erased. 
Moreover, a memory element of chalcogenide material is 
nearly nonvolatile, in that it need only be rarely (e.g., once 
per Week) connected to a poWer supply or refreshed, in order 
to retain its programmed loW resistance state. Such memory 
cells, unlike DRAM cells, can be accessed Without requiring 
a refresh. 

While conventional sense amp circuitry, such as those 
associated With DRAM cells, are capable of sensing pro 
grammable conductor random access memory (PCRAM) 
cells, the natural refresh operation associated With these 
sense ampli?ers are not required in a PCRAM context. 
Indeed, frequent reWriting of PCRAM cells is not desirable 
because it can cause the PCRAM cell to become resistant to 
rewriting. Accordingly, there is a need and desire for a 
circuit and method for reading PCRAM cells Without 
refreshing them. 

SUMMARY OF THE INVENTION 

The present invention is directed to a method and appa 
ratus for reading a PCRAM memory cell Without refreshing 
the cell. At a predetermined time after the programmable 
conductor of the PCRAM cell has been coupled to its bit 
line, the programmable conductor is electrically decoupled 
from the bit line. The predetermined time is chosen to be a 
point in time before the N- and P-sense ampli?ers have been 
activated. In this manner, the N- and P-sense ampli?er can 
change the potential on the bit line Without causing the 
altered potential to reWrite the PCRAM cell. In PCRAM 
arrays Which use access transistors having gates coupled to 
Word lines, the present invention may be practiced by 
deactivating the Word line at the predetermined time after 
the Word line has been activated. In PCRAM arrays Which 
do not include access transistors, isolation transistors may be 
added on each bit line betWeen the PCRAM cell and the 
sense ampli?er to decouple the PCRAM cells from their 
associated bit lines. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing and other advantages and features of the 
invention Will become more apparent from the detailed 
description of exemplary embodiments of the invention 
given beloW With reference to the accompanying draWings 
in Which: 

FIG. 1 is a schematic diagram of a conventional DRAM 

cell; 
FIG. 2 is a schematic diagram of a conventional DRAM 

array; 
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FIG. 3 is schematic diagram a conventional sense ampli 
?er; 

FIG. 4 is a schematic diagram of a PCRAM cell; 
FIG. 5 is a schematic diagram a PCRAM array; 
FIGS. 6A and 6B are timing diagrams illustrating the 

voltages on the Word and bit lines When a PCRAM cell is 
read in high resistance and loW resistance states, respec 
tively. 

FIG. 7 is a How chart illustrating the method of the 
invention; 

FIG. 8 is a block diagram of a processor based system 
including a PCRAM in accordance With the principles of the 
present invention; 

FIG. 9 is a schematic diagram of a PCRAM array accord 
ing to a second embodiment of the present invention; and 

FIG. 10 is a schematic diagram of an alternative embodi 
ment of a PCRAM cell for use With the PCRAM array of 
FIG. 9. 

DETAILED DESCRIPTION OF THE 
INVENTION 

NoW referring to the draWings, Where like reference 
numerals designate like elements, there is shoWn in FIG. 4 
a PCRAM cell 400 and in FIG. 5 a memory device 500 a 
memory device comprised of a plurality of PCRAM cells 
400ai400h. As illustrated in FIG. 4, a PCRAM cell 400 
comprises an access transistor 401, a programmable con 
ductor memory element 402, and a cell plate 403. The access 
transistor 401 has its gate coupled to a Word line 405 and one 
terminal coupled to a bit line 406. A small portion of an array 
of such cells is shown in FIG. 5 as including bit lines 406a, 
406a‘, 406b, 4061)‘, and Word lines 405a, 405b, 4050, and 
405d. As shoWn in FIG. 5, the bit lines 406a, 4061) are 
coupled to a respective pre-charge circuits 501a, 105b, 
Which can sWitchably supply a pre-charge potential to the bit 
lines 406a, 406a‘, 406b, 4061)‘. The other terminal of the 
access transistor 401 is coupled to one end of the program 
mable conductor memory element 402, While the other end 
of the programmable conductor memory element 402 is 
coupled to a cell plate 403. The cell plate 403 may span and 
be coupled to several other PCRAM cells. The cell plating 
403 is also coupled to a potential source. In the exemplary 
embodiment the potential source is at 1.25 volts (Vdd/2). 

The access transistor 401, as Well as the other access 

transistors, are depicted as N-type CMOS transistors, hoW 
ever, it should be understood that P-type CMOS transistors 
may be used as long as the corresponding polarities of the 
other components and voltages are modi?ed accordingly. 
The programmable conductor memory element 402 is pref 
erably made of chalcogenide, hoWever, it should be under 
stood that any other bi-stable resistive material knoWn to 
those With ordinary skill in the art may also be used. In the 
exemplary embodiment, the programmable conductor 
memory element 402 stores a binary 0 When has a resistance 
of approximately 10 K ohm, and a binary 1 When it has a 
resistance greater than 10 M ohm. The programmable con 
ductor is ideally programmed to store a loW resistance, e.g., 
binary 0, by a voltage of +0.25 volt and can be restored to 
a high resistance value, e.g., a binary l, by a programming 
voltage of —0.25 volt. The programmable conductor can be 
nondestructively read by a reading voltage having a mag 
nitude of less than 0.25 volt. In the exemplary embodiment, 
the reading voltage is 0.2 volt. HoWever, it should be readily 
apparent that alternate parameters may be selected for the 
PCRAM cell Without departing from the spirit and scope of 
the invention. 
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FIG. 5 illustrates a memory device 500 comprising a 

plurality of memory arrays 550a, 5501). Each memory array 
550a, 5501) includes a plurality of memory cells 400ai400d, 
400e400h arranged by tiling a plurality of memory cells 
400 together so that the memory cells 400 along any given 
bit line 406a, 406a‘, 406b, 4061)‘ do not share a common 
Word line 40511410501. Conversely, the memory cells 400 
along any Word line 405ai405d do not share a common bit 
line 406a, 406a‘, 406b, 4061)‘. Each Word line is sWitchably 
to a Word line driver 512a*512d via a transistor 510a*510d. 
Additionally, each Word line may also be sWitchably coupled 
to ground via transistors 520ai520d. The gates of the 
transistors 510a*510d, 520ai520d are coupled to signal 
lines 511a*511d used to selectively couple/decouple the 
Word lines 405ai405d to/from the Word line drivers 
512a*512 b/ground. Each memory array 550a, 5501) has its 
oWn set of bit lines. For example, memory array 550a 
includes bit lines 406a, 406b, While memory array 550!) 
includes bit lines 406a‘, 4061)‘. The bit lines from each 
adjacent pair of memory arrays 550a, 5501) are coupled to a 
common sense ampli?er 600a, 6001). For example, bit lines 
406a, 40611‘ are coupled to sense ampli?er 600a, While bit 
lines 406b, 4061)‘ are coupled to sense ampli?er 60019. For 
simplicity, FIG. 5 illustrates a memory device having only 
tWo arrays 550a, 550b, and eight cells 400ai400h. HoWever, 
it should be understood that real World memory devices 
Would have signi?cantly more cells and arrays. For example, 
a real World memory device may include several million 
cells 400. 
The memory device 500 also includes a plurality of 

pre-charge circuits 501a*501b. One pre-charge circuit (e.g., 
501a) is provided for each pair of bit lines coupled to a sense 
ampli?er (e.g., 406a, 406a‘). Each pre-charge circuit (e.g., 
501a) includes tWo transistors (e.g., 501a, 5011)). One ter 
minal of each transistor is coupled to a potential source. In 
the exemplary embodiment, the potential source is at 2.5 
volts (V dd). Another terminal of each transistor (e.g., 502a, 
5021)) is coupled to its corresponding bit line (e.g., 406a, 
406a‘, respectively). The gate of the each transistor (e.g., 
502a, 5021)) is coupled to a pre-charge control signal. As 
illustrated, the transistors (e.g., 502a, 5021)) are P-MOS type 
transistor. Thus, When the pre-charge signal is loW, the 
transistors (e.g., 502a, 5021)) conducts, thereby pre-charging 
the bit lines (e.g., 406a, 40611‘). When the pre-charge signal 
is high, the transistors (e.g., 502a, 5021)) are switched off. 
Due to capacitance inherent in the bit lines (e.g., 406a, 
40611‘), the bit lines Will remain at approximately the pre 
charge voltage level of 2.5 volts for a predetermined period 
of time. 

Reading a PCRAM cell, for example, cell 40011, in the 
PCRAM device 500 comprises the operations of accessing 
and sensing. 
The purpose of the access operation is to create a small 

potential difference betWeen the bit lines (e.g., 406a, 406a‘) 
coupled to the same sense ampli?er (e.g., 300a) of the 
memory cell 400a being read. This small potential difference 
can be subsequently ampli?ed by a sense ampli?er 300 to 
the threshold required to subsequently drive a comparator 
coupled to the bit lines to output a value corresponding to the 
contents of the memory cell 400a. NoW also referring to 
FIG. 7, the access operation begins With the pre-charging of 
the bit lines 406a, 406a‘, 406b, 4061)‘ of the memory device 
500 via pre-charge circuits 501a*501b (step S1). The bit 
lines may be pre-charged by temporarily bringing the pre 
charge signal loW, causing transistors 502ai502d to conduct 
the pre-charge voltage (V dd) to the bit lines 406a, 406a‘, 
406b, 4061)‘. Once the pre-charge signal returns to a high 
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state, the transistors 502ai502d stop conducting, but the bit 
lines 406a, 406a‘, 406b, 4061)‘ Will remain at the pre-charge 
potential for a predetermined period due to the capacitance 
inherent in the bit lines. 

In the exemplary embodiment, bit lines 406a, 406a‘, 406b, 
4061)‘ are pre-charged to 2.5 volts and the cell plate 403a, 
4031) is tied to 1.25 volts. The 1.25 volt potential difference 
betWeen the bit line and the cell plate Will cause the bit line 
to discharge to the cell plate through the access transistor 
401 (When it is in a conductive state) and the programmable 
conductor memory element 402. The discharge rate is 
dependent upon the resistive state of the programmable 
conductor memory element 402. That is, a loW resistive state 
Will cause the bit line to discharge faster than a high resistive 
state. As the bit line discharges, its voltage Will fall from the 
pre-charge voltage toWard the cell plate voltage. 

In the memory device 500, the Word lines 405ai405d are 
normally at ground potential. Thus the access transistors 
40lai40le are normally sWitched o?‘. NoW also referring to 
FIGS. 6A and 6B, at time T1, the Word line 405a associated 
With the cell 40011 to be read is activated by bringing its 
potential from ground to a predetermined level (step S2). 
The predetermined level is designed to create a reading 
voltage at the programmable contact 40211, Which as previ 
ously explained, must have a magnitude less than the 
magnitude of a Writing voltage. In the exemplary embodi 
ment, the Word line 40111 is brought to 2.25 volt. Since the 
threshold voltage of the transistor 40111 is 0.8 volt, the 
potential at the interface betWeen the transistor 401a and the 
programmable contact 40211 is 1.45 volt. This results in a 
reading voltage of 0.2 volt since the voltage at the interface 
betWeen the programmable contact 402a and the cell plate 
40311 is maintained at 1.25 volt. 
Due to the inherent parasitic capacitance betWeen the 

Word line 401a and its associated bit lines 40611 the potential 
in the associated bit line 406a increase as the Word line 40111 
is activated. In the exemplary embodiment, the potential in 
bit line 406a increases by 0.1 volt to 2.6 volt. It should be 
noted that the Word lines 4050, 405d coupled to comple 
mentary bit lines 406a‘, 4061)‘ remain at ground potential. 
Thus, bit lines 406a‘, 4061)‘ remain at the pre-charge poten 
tial, Which is 2.5 volt in the exemplary embodiment. 

The increased potential of bit line 40611 is used in com 
bination With the tWo bi-stable resistive states of the pro 
grammable contact 40211 to cause one of the bit lines (e.g., 
406a) coupled to a sense ampli?er (e. g., 300a) to have either 
a greater or lesser voltage than the other bit line (e.g., 406a‘) 
coupled to the same sense ampli?er 300a. Essentially, the 
parasitic capacitance betWeen Word lines and associated bit 
lines is used to achieve an initial state Where the bit line (e. g., 
406a) associated With the cell 400a being read is at a higher 
potential than the other bit line 406a‘ coupled to the same 
sense ampli?er 30011. The memory is designed and operated 
so that if the programmable contact 40211 has a high resistive 
state, bit line 406a discharges sloWly, thereby causing it to 
maintain its relatively higher potential. HoWever, if the 
programmable contact 40211 has a loW resistive state, bit line 
406a discharges at a faster rate, so that bit line 406 transi 
tions to a loWer potential state than bit line 406a‘. These tWo 
effects can be seen by comparing FIG. 6A (illustrating the 
effects of a programmable contact at a high resistive state) 
and FIG. 6B (illustrating the effects of a programmable 
contact at a loW resistive state.) 
At time T2, a predetermined time t after time T1 (step S3), 

the Word line 405a associated With the cell 400a being read 
is deactivated by returning its potential to ground (step S4). 
Word line deactivation may be achieved by, for example, 
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grounding terminal 51111, which Will cause the transistor 
510a serially coupling the Word line driver 51211 to the Word 
line 40511 to stop conducting. This shuts off access transis 
tors 40111, 401 thereby preventing further discharge of the bit 
line through the programmable contact 40211, 402e. This also 
prevents the ampli?ed potential difference developed during 
the subsequent sensing operation from refreshing (Writing) 
the programmable contact 40211, 402e. In the rare instance 
When it Would be desirable to refresh the contents of the 
programmable contact 40211, 402e, the Word line can be held 
high for a longer period of time. This mode of operation is 
shoWn via the dashed trace in FIGS. 6A and 6B. In the 
exemplary embodiment, the predetermined time t is approxi 
mately 15 nanosecond (i.e., T2:T1+15 ns). 

It should be noted that the values of t and T2 may be 
varied Without departing from spirit of the invention. In 
particular, the objectives of the present invention Will be 
realiZed by electrically decoupling the programmable con 
tact from the bit line at any time before the bit line voltages 
are ampli?ed by the sense ampli?ers 310N, 310P to a level 
Which result in the potential difference across the program 
mable contact reaching threshold required to Write the 
programmable contact. Thus, While FIGS. 6A and 6B illus 
trate T2 occurring prior to either sense ampli?ers 310N, 
310P being activated, depending upon the electrical charac 
teristics of the memory device 500, T2 may occur, for 
example, betWeen the activation of the N-sense amp 310N 
and the P-sense amp 310P. Regardless, the predetermined 
time t must be suf?ciently long to permit the logical state of 
the programmable conductor 40211 to be re?ected on the bit 
line 406a; i.e., the bit line 406a voltage to be suf?ciently 
altered from the pre-charge voltage by the discharge through 
the programmable conductor 402a so that the tWo resistive 
states of the programmable conductor 402a can be distin 
guished and ampli?ed by the sense ampli?er 300a. 
At time period T3, the N-sense ampli?er 310N is acti 

vated (start of step S5). As previously noted With respect to 
DRAM systems, activating the N-sense ampli?er causes the 
bit line (e.g., 406a‘) having the loWer potential to be pulled 
With the NLAT signal toWard ground. In the exemplary 
embodiment, T3 is approximately 30 nanosecond after T1. 
HoWever, it should be noted that the value T3 may be varied 
Without departing from spirit of the invention. 

At time period T4, the P-sense ampli?er 3101’ is activated. 
As previously noted With respect to DRAM systems, acti 
vating the P-sense ampli?er causes the bit line (e.g., 406a) 
having the higher potential to be pulled toWards Vcc. In the 
exemplary embodiment, T4 is approximately 35 nanosecond 
after T1 (end of step S5). HoWever, it should be noted that 
the value of T4 may be varied Without departing from spirit 
of the invention. 
At time T5, the sense ampli?er 300a associated With the 

cell 400a being read Will have one ofits bit lines (e.g., 406a) 
at Vcc potential and the other bit line (e.g., 40611‘) at ground 
potential. Since one bit line coupled to sense ampli?er 30011 
is noW at ground potential While the other bit line is noW at 
Vcc potential, a comparator (or differential ampli?er) 350 
can be used to output a value corresponding to the contents 
of the cell 40011 on signal line 351a. 

FIG. 9 is an illustration of a memory device 900 according 
to an alternate embodiment of the present invention. This 
alternate embodiment is designed for use With PCRAM cells 
Which do not include an access transistor 401. For example, 
FIG. 10 illustrates one example of a PCRAM cell 400' Which 
utiliZes a pair of diodes 1001a, 1001b in lieu of an access 
transistor. As illustrated, the PCRAM cell 400' features a 
programmable conductor memory element 402 Which is 












