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Abstract

The main memory subsystem has become inefficient. Sustaining performance gains has power 
consumption, capacity, and cost moving in the wrong direction. This talk proposes novel 
module, DRAM, and interconnect architectures in an attempt to alleviate these trends. The 
proposed architectures utilize inexpensive innovations, including interconnect and packaging, 
to substantially reduce the power, and increase the capacity and bandwidth of the main 
memory system. A low cost advanced packaging technology is used to propose an 8 die and 

332-die memory module. The 32-die memory module measures less than 2 cm3. The size and 
packaging technique allow the memory module to consume less power than conventional 
module designs. A 4 Gb DRAM architecture utilizing 64 data pins is proposed. The DRAM 
architecture is inline with ITRS roadmaps and can consume 50% less power while increasing 
b d id h b h l b f d i d b l i ibandwidth by 100%.  The large number of data pins are supported by a low power capacitive-
coupled interconnect. The receivers developed for the capacitive interface were fabricated in 
0.5 µm and 65 nm CMOS technologies. The 0.5 µm design operated at 200 Mbps, used a 
coupling capacitor of 100 fF, and consumed less than 3 pJ/bit of energy. The 65 nm design 

d 4 Gb d li i f 1 f d d l h 1 f /bioperated at 4 Gbps, used a coupling capacitor of 15 fF, and consumed less than 15 fJ/bit.
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Server Platform

 Intel Server Board S5502UR
Memory SlotsMemory Slots
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Main Memory Limitations

 Datacenter sparsity masked power limitations
 Power trend: Energy consumption doubled every 5 years

 Server power
 ~50 W in 2000
 ~250 W in 2008

 Server power breakdown
 CPU: 37% Memory: 17% CPU: 37%, Memory: 17%
 Trend is Memory power > CPU power

Main memory power
More die per module
 Less modules per channel
 Hi h b d idth Higher bandwidth
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Main Memory Limitations
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Main Memory Limitations
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Main Memory Limitations

 CPU power wall
 Voltage scaling reached its limit
 Multiple cores supplement performance gains
 No “multi-core” for DRAM

 DRAM voltage scaling reaching its limitg g g
 Current rate increase > voltage reduction rate
 Power increasing

 DRAM pre fetch DRAM pre-fetch
 Memory core operates at slower frequency
 High power I/O devices and data-path
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Main Memory Limitations
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Main Memory Limitations

 DRAM inefficiencies increase cost and power
 Processor cache increasing
 Intel Nehalem processor
 DRAM would need to have L3 BW and latency
 “ t th ill i f l th t “…create the illusion of a large memory that we can access as 

fast as a very small memory.” – Patterson & Hennessy

Local L1 L2 L3 RAM
Read BW [GB/s] 45.6 31.1 26.2 10.1
Write BW [GB/s] 45.6 28.8 19.9 8.4[ ]
Latency [ns] 
(cycles)

1.3 (4) 3.4 (10) 13.0 (38) 65.1 (191)
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Main Memory Limitations

 DRAM efficiencies increase performance
 Capacity versus Performancep y

 Capacity costs power
Multiple memory channelsp y
 Each additional module increases power
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Main Memory Limitations

 Bandwidth versus performance

 Bandwidth costs power Bandwidth costs power
 Buffer on board
Multiple channels
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Main Memory Limitations

 DRAM inefficiencies in practice
 Typical video/web server motherboardyp
 20+ layer PCB
 6 memory channels

 RDIMM
 10+ layer PCB
Maximum comp countMaximum comp. count
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Main Memory Limitations

 12 RDIMM
 Termination

o 36 components per DIMM
o 8 I/O per component
o 2 7 W of termination power for a read/write per moduleo 2.7 W of termination power for a read/write per module
o 32.4 W total termination power

Wordline firing
o 100 ns activation rate
o 8126 page size
o 200 fF per bitlinep
o 11.2 W total bitline sense amplifier power

 Sustaining performance gains through capacity and bandwidth 
i d t i ti i dincreases power and cost – innovation required.
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Nano-Module

Goals
 Purpose was to move labs into prototype generation
 Required low cost, high bandwidth, and low power memory 

solution that can be used with capacitive coupled interconnects 
in advanced server architecturesin advanced server architectures

Module component count trends required a new approach
 Nano-module proposed
 Low cost advanced packaging technology
 Off-the-shelf memory components

 R l b l d Results can be leveraged
 NAND
MobileMobile
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Nano-Module

 Literature review of high capacity memory stacks
 1990’s
Multichip Modules

o Realized planar space limitations
 V l & L i Val & Lemione
 Irvine Sensors

 Solutions proposed in research Solutions proposed in research
 No industry due to memory hierarchy effectiveness
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Nano-Module

Memory stack technology gaining new attention
 2010
 Samsung quad die with TSV

o 80 µm pitch, 30 µm diameter, 300 TSV
R 5 Ω C 300 fFo RTSV = 5 Ω, CTSV = 300 fF

 Pros:
 Lower power, higher bandwidthp , g

 Cons:
 Cost, integration
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Nano-Module

 Literature review revealed novel solutions
 Slant the die!
 Applicable to capacitive-coupled interconnects
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Nano-Module

 Not the first to try it:

21



Nano-Module

 Controlled Impedance
 All Signals 50 Ω controlled impedance
 DQS and CLK 120 Ω differential impedance

 Trace Length Matching
 All Data matched to worst case
 All CLK matched to worst case
 All Address/Command matched to worst caseAll Address/Command matched to worst case
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Nano-Module

 Size calculations
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Nano-Module

 Thermal option
 Thermal conductivity

o Silicon, Metals >> Mold Compound
o Hot spots
o Temperature gradiento Temperature gradient
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Nano-Module

 Thermal option
 Heat plate
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Wide I/O DRAM Architecture

 4 Gb DRAM
Meets 2012 ITRS predictions
 Developed at Boise State

 Edge aligned pads
 Page size reduction
 Low cost process
 < 4 levels of metal < 4 levels of metal
 No impact to die size
 No impact to array efficiency

Move to 64 data pins
 Report challenges
 i i Propose innovations
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Wide I/O DRAM Architecture

 4 Gb Edge DRAM
 Centralized Row and Column
 Smaller die
 Higher efficiency
 4 l l f t l < 4 levels of metal
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Wide I/O DRAM Architecture

 Challenges
 Number of metal layers
 Global data routing
 Local data routing

 P l Proposals
 Split bank structure
 Data-path designData path design
 Through bitline routing
 SLICE architecture
 Capacitive-coupled I/O
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High Bandwidth Interconnect

 Capacitive-coupling
 Increased bandwidth

o Reduced ESD capacitance
o Smaller I/O channel = more I/O
o Removal of inductive channelo Removal of inductive channel

 Low power
o Reduced ESD capacitance
o Low power Tx & Rx

 Low cost
o Simpleo Simple

 Alignment required
 Literature review
 Revealed inefficiencies and lack of application
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High Bandwidth Interconnect

 Proposed receiver design
 Extreme low power
 ~1 gate delay latency
 ‘DC’ transmission
 RTZ NRZ RTZ  NRZ
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High Bandwidth Interconnect

 0.5 µm CMOS design (proof 
of concept)
 5.0 V process
 50 fF poly-poly capacitor
 200 Mbps 200 Mbps
 3 – 8 pJ/bit
 325 Gb/mm2
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High Bandwidth Interconnect

 Chip micrograph
 1.5 mm x 1.5 mm
 9 structures

 Experimental results
 Operate at V = 2 0 V Operate at VTX  2.0 V
 3 pJ/bit at 200 Mbps

Output
CC =	100	fF,	VTX =	2.0	V

Input
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High Bandwidth Interconnect

 65 nm CMOS design (proof 
of scalability)
 1.2 V process
 15 fF metal-metal 

capacitorcapacitor
 4 Gbps
 17 µm2

 227 Tbps/mm2
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High Bandwidth Interconnect

 Die micrograph
 2 mm x 2 mm

 Experimental results
 2 Gbps @ 0.9V
 50 fF coupling capacitor

2 0 Gb 0 9 V1 0 Gb 1 2 V 2.0 Gbps – 0.9 V 1.0 Gbps – 1.2 V 
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High Bandwidth Interconnect

Work Process Supply Data Rate Coupling Gbps/mm2 Energy Requires 
CLK?

Kanda, 2003 0.35 µm 3.3 V 1.27 Gbps ~10 fF 2117 2.4 pJ/bit Yes

Wilson, 2007 0.18 µm 1.8 V 3 Gbps 150 fF 555 5 pJ/bit No

Fazzi, 2008 0.13 µm 1.2 V 1.23 Gbps ~10 fF 19,219 0.14 pJ/bit Yes

Kim 2009 0 18 µm 1 8 V 2 Gbps 600 fF 690 0 8 pJ/bit YesKim, 2009 0.18 µm 1.8 V 2 Gbps 600 fF 690 0.8 pJ/bit Yes

This work 0.5 µm 5.0 V 200 Mbps 50 fF 325 8 pJ/bit No

This work 65 nm 1.2 V 4 Gbps 15 fF 226,757 0.015 pJ/bit No
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Conclusions

 Nano-Module
 Developed a new research direction for industry research labs
 Developed initial motivation
 Developed initial prototype 

 DRAM A hi DRAM Architecture
 Demonstrated benefits of wide I/O topologies
 Proposed several low power innovationsProposed several low power innovations
 Provided application for novel interconnect technologies

 Capacitive-Coupled Receiver
 Demonstrated low power receiver designs
 Achieved 2 Gbps at < 15 fJ/bit in 65 nm 
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Questions

??
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Appendix - PLL

 65 nm test chip
 PLL
 PRBS generator
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Appendix - PLL

 PLL
 Phase detector
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Appendix - PLL

 Charge pump
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Appendix - PLL

 Voltage controlled oscillator
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Appendix - PLL

 Over damped

42



Appendix - PLL

 PLL at lock
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Appendix - PLL

 PLL layout

44



Appendix - PLL

 PRBS generator
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Appendix - PCB

 PCB test board
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Appendix – Dead Bug
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Appendix – Dead Bug
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Appendix – 65 nm Chip
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