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The main memory subsystem has become inefficient. Sustaining performance gains has power
consumption, capacity, and cost moving in the wrong direction. This talk proposes novel
module, DRAM, and interconnect architectures in an attempt to alleviate these trends. The
proposed architectures utilize inexpensive innovations, including interconnect and packaging,
to substantially reduce the power, and increase the capacity and bandwidth of the main
memory system. A low cost advanced packaging technology is used to propose an 8 die and
32-die memory module. The 32-die memory module measures less than 2 cm3. The size and
packaging technique allow the memory module to consume less power than conventional
module designs. A 4 Gb DRAM architecture utilizing 64 data pins is proposed. The DRAM
architecture is inline with ITRS roadmaps and can consume 50% less power while increasing
bandwidth by 100%. The large number of data pins are supported by a low power capacitive-
coupled interconnect. The receivers developed for the capacitive interface were fabricated in
0.5 um and 65 nm CMOS technologies. The 0.5 um design operated at 200 Mbps, used a
coupling capacitor of 100 fF, and consumed less than 3 pJ/bit of energy. The 65 nm design
operated at 4 Gbps, used a coupling capacitor of 15 fF, and consumed less than 15 fJ/bit.
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1 Intel Server Board S5502UR
B Memory Slots

College of 'S ngineering



oBOISE

STATE Organization

UNIVERSITY

(] Main Memory Limitations

1 Nano-Module

1 Wide /O DRAM Architecture
1 High Bandwidth Interconnect
1 Conclusions

College of ii.ff?'%__:';\-_:ﬁgineering



o

BOISE

ST ATE Main Memory Limitations

UNIVERSITY

] Datacenter sparsity masked power limitations
v Power trend: Energy consumption doubled every 5 years

1 Server power

v ~50 W in 2000

v ~250 W in 2008
1 Server power breakdown

v' CPU: 37%, Memory: 17%

v’ Trend is Memory power > CPU power
d Main memory power

v More die per module

v" Less modules per channel
v" Higher bandwidth
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“ New Server Spending ¥ Power and Cooling Spending

Global Spending (Billions $)
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0 CPU power wall
v" Voltage scaling reached its limit
v Multiple cores supplement performance gains
v No “multi-core” for DRAM
0 DRAM voltage scaling reaching its limit
v" Current rate increase > voltage reduction rate
v Power increasing
0 DRAM pre-fetch
v Memory core operates at slower frequency
v" High power I/O devices and data-path
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d DRAM inefficiencies increase cost and power
v’ Processor cache increasing
v Intel Nehalem processor
v DRAM would need to have L3 BW and latency

v’ “...create the illusion of a large memory that we can access as
fast as a very small memory.” — Patterson & Hennessy

Read BW [GB/s] 45.6 31.1 26.2 10.1
Write BW [GB/s] 45.6 28.8 19.9 8.4
Latency [ns] 1.3 (4) 3.4 (10) 13.0(38) | 65.1(191)
(cycles)

o

College of (&ngineering

12



B0l

ﬂ ATE Main Memory Limitations

UNIVERSITY

d DRAM efficiencies increase performance
[ Capacity versus Performance
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] Capacity costs power
v Multiple memory channels
v" Each additional module i Increases power
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1 Bandwidth versus performance

32
Feak Floating-Point Performance

16 7

Attainable GFlops/sec
ee

Memaory Pra—. Processor
Bound Bound

1/4 1,2 1 2 4 8 16
Arithmetic Intensity (Flops/Byte)

1 Bandwidth costs power
v’ Buffer on board
v’ Multiple channels
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d DRAM inefficiencies in practice

1 Typical video/web server motherboard
v 20+ layer PCB
v 6 memory channels
d RDIMM
v 10+ layer PCB

v’ Maximum comp. count

Front View
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d 12 RDIMM

v’ Termination
o 36 components per DIMM
o 8 I/O per component
o 2.7 W of termination power for a read/write per module
o 32.4 W total termination power

v Wordline firing
o 100 ns activation rate
o 8126 page size
o 200 fF per bitline
o 11.2 W total bitline sense amplifier power

] Sustaining performance gains through capacity and bandwidth
increases power and cost — innovation required.
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JGoals

v" Purpose was to move labs into prototype generation

v’ Required low cost, high bandwidth, and low power memory
solution that can be used with capacitive coupled interconnects
in advanced server architectures

1 Module component count trends required a new approach
1 Nano-module proposed

v Low cost advanced packaging technology

v" Off-the-shelf memory components
1 Results can be leveraged

v NAND

v’ Mobile
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 Literature review of high capacity memory stacks

1 1990°’s
v’ Multichip Modules

o Realized planar space limitations
v Val & Lemione
v Irvine Sensors
1 Solutions proposed in research
v' No industry due to memory hierarchy effectiveness

=
./f-‘

Thick Film Multilayer
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d Memory stack technology gaining new attention

2010
v’ Samsung quad die with TSV
o 80 um pitch, 30 um diameter, 300 TSV
0 Rygy=5 Q, Crop =300 fF
1 Pros:
v’ Lower power, higher bandwidth

1 Cons:

v" Cost, integration

TSV (~300)

Core Test
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1 Literature review revealed novel solutions
1 Slant the die!
1 Applicable to capacitive-coupled interconnects

e

Fad

(] __._,.,-""" Substrate

Connection ——
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] Not the first to try it:
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1 Controlled Impedance

v" All Signals 50 Q controlled impedance

v DQS and CLK 120 Q differential impedance
1 Trace Length Matching

v" All Data matched to worst case

v" All CLK matched to worst case

v" All Address/Command matched to worst case

L8 ln( 5.98H j W
e 4141 08 +T ——
Microstrip
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1 Size calculations

J_.
' I
d
I,
T
+ - > ,
h . h _ tdie thickness .
elg I = tsub thickness + tconnecri()n + + die width — tdie pad to edge S &
Cosx
Wldth = (HO. Slgnals - 1) tcon pitch + tcon diameter + z(tdie to pad edge + twbl + twa )

(# die = 1)t 0
. ie thickness
len’gth = 2’( twbl + twbz ) +s1nao- tdie thickness + - +cosar tdie width
SIn&
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1 Thermal option

v" Thermal conductivity
o Silicon, Metals >> Mold Compound
o Hot spots

o Temperature gradient
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1 Thermal option
v’ Heat plate

TN\

Heat Removal Plate

High Thermal
Conductive Material
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D 4 Gb DRAM Chip Size = 71.4 mm?

Array Efficiency = 57.7%
7.0 mm

v Meets 2012 ITRS predictions

£ |
v’ Developed at Boise State * ‘ -
J Edge aligned pads soy | 2| dm | dmy |2 Am
[ Page size reduction
J Low cost process puill -0 I Bl - e
v’ < 4 levels of metal E — im
v No impact to die size = R . A
v" No impact to array efficiency o il e -
O Move to 64 data pins
v Report challenges s | 5| am | a2
v’ Propose innovations -
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4 Gb Edge DRAM

v Centralized Row and Column

v' Smaller die

v Higher efficiency
v’ <4 levels of metal

Col

Chip Size = 68.88 mm?
Array Efficiency = 59.9%

Edge IO Interface

12.3 mm
'
.
6.0 mm |
«< >|
A
512M Bank, . 512M Bank, b
S =
= =
512M Bank, S12M Bank, =
COLUINM COLUMMN
512M Bank. 512M Bank,
=
2
=
512M Bank, 512M Bank,

W §°¢g

< ngineering

27



o

BOISE
STATE

Wide I/O DRAM Architecture

UNIVERSITY

1 Challenges
v Number of metal layers
v’ Global data routing
v’ Local data routing

1 Proposals
v" Split bank structure
v’ Data-path design
v" Through bitline routing
v SLICE architecture
v" Capacitive-coupled I/0
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1 Capacitive-coupling S
v’ Increased bandwidth T
o Reduced ESD capacitance ﬁﬂ ééé
o Smaller I/O channel = more 1I/O COVORRRA s

o Removal of inductive channel

v Low power
o Reduced ESD capacitance

o Low power Tx & Rx
v Low cost
o Simple

v' Alignment required

) Literature review
v’ Revealed inefficiencies and lack of application

S
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1 Proposed receiver design
v’ Extreme low power
v’ ~1 gate delay latency
v ‘DC’ transmission
v RTZ = NRZ

a0

1 14 4

OouUT

BIAS

Vi (Return to Zero)
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0.5 um CMOS design (proof m
of concept) w
v/ 5.0 V process —
v 50 fF poly-poly capacitor
v/ 200 Mbps
v 3-8 pl/bit
v/ 325 Gb/mm?

T Dﬂ

Unlabeled NMOS are 1.5/0.6
Unlabeled PMOS are 2.1/0.6
Units in pm
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1 Chip micrograph
v 1.5mmx 1.5 mm

v’ 9 structures

1 Experimental results
v’ Operate at V;,, =2.0V
v' 3 pJ/bit at 200 Mbps
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10:43 Abd

ngineering

32



o

BOISE

(TATE High Bandwidth Interconnect

UNIVERSITY

d (6)? 8121:1 f}iﬁg,? design (proof l [ \ ,’ U U

v 1.2 V process
v" 15 {F metal-metal

capacitor r === —
R —" —— —
v 17 pm? T
v’ 227 Tbps/mm? X
2. 16pm
—
Ty RXour
0.96 um i jJ_LT
240/120
Unlabeled NMOS are 240/60 ||
Unlabeled PMOS are 540/60

Units in nm
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| ﬁ@ gaﬂ.@m&ga@g

] Die micrograph
v 2 mm x 2 mm

1 Experimental results
v 2 Gbps @ 0.9V

1%
v' 50 fF coupling capacitor g S

: |
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Kanda, 2003 0.35um | 3.3V 1.27 Gbps ~10 fF 2117 2.4 pJ/bit Yes
Wilson, 2007 | 0.18 um | 1.8V 3 Gbps 150 fF 555 5 pJ/bit No
Fazzi, 2008 0.13pum | 1.2V | 1.23 Gbps ~10 fF 19,219 0.14 pJ/bit Yes
Kim, 2009 0.18 um | 1.8V 2 Gbps 600 fF 690 0.8 pJ/bit Yes
This work 0.5 um 50V | 200 Mbps 50 fF 325 8 pJ/bit No
This work 65 nm 1.2V 4 Gbps 15 fF 226,757 0.015 pJ/bit No
Kanda. K. Antono. D.D.. Ishida, K. Kawaguchi. H.. Kuroda, T.. Sakurai, T.: Fazzi, A. Canegallo, R., Ciccarelli, L., Magani, L., Natali, F., JTung, E., Rolandi,
«1.27 Gb/s/pin 3 mW/pin Wireless Superconnect (WSC) Interface Scheme.” P-_- G“?“”“- R.. 3D Capacitive Inter_c.onn.ectlous With Mono- and Bi-
IEEE Solid-State Circuits Conference, Session 10, Paper 10.7, Feburuary e Directional Capabilities,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp.
2003. 275-284, Jan. 2008
Wilson, I.; Mick, S.; Jian Xu; Lei Luo; Bonafede, S.; Huffinan, A.; LaBennett, R.; Kim, G., Takanuya, M., Sakurai, T., “A 25-mV-Sensitivity 2-Gb/s Optimum-
Franzon, P.D.; , "Fully Integrated AC Coupled Interconnect Using Buried Logic-Threshold Capacitive-Coupling Receiver fro Wireless Wafer Probing
Bumps," Advanced Packaging, IEEE Transactions on , vol.30, no.2, pp.191-199, Systems.” Circuits and Systmes. IEEE Transactions on. vol. 56, no. 9, pp. 710-
May 2007 713, Sept. 2009
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(J Nano-Module

v’ Developed a new research direction for industry research labs

v’ Developed initial motivation

v" Developed initial prototype
(d DRAM Architecture

v Demonstrated benefits of wide 1/0O topologies

v" Proposed several low power innovations

v’ Provided application for novel interconnect technologies
1 Capacitive-Coupled Receiver

v Demonstrated low power receiver designs
v" Achieved 2 Gbps at < 15 fJ/bit in 65 nm

o
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1 65 nm test chip
v PLL o Ll | J
v PRBS generator S O S G G G G O A
o [ [
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Frequency
Divider
|4p]
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1 Charge pump
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[ Voltage controlled oscillator
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Transkent Respense
4 Over damped e
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A
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1 PLL at lock

Transiant Responss
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Q PLL layout

 CHARGE
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1 PRBS generator
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] PCB test board
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Appendix — 65 nm Chip
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