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Abstract –Implementation of analog-to-digital converters in the IF stage of a 
communication receiver can employ bandpass delta-sigma modulation 
(BPDSM). The benefit of using BPDSM is the ease with which in-phase (I) and 
quadrature (Q) components of the information can be extracted and translated to 
DC (to minimize both power and the required operating speeds). BPDSM 
topologies are commonly based on a cascade of resonators with transfer 
functions of z−2/(1 + z−2). This talk will show that these topologies, seen 
frequently in the literature, are always unstable. Discussions concerning the 
design of BPDSM-based analog-to-digital converters, in the IF stage, will be 
presented including why two or more paths are required and the details of 
implementing I/Q demodulation. Finally, examples will be given that show how 
the design topologies are applied.
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Low Pass Delta-Sigma Modulation (DSM)

� A low pass second order delta sigma modulator is described by the 

following transfer function

� This equation is implemented using
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� Modeling the comparator with only an additive noise source doesn’t accurately 

model the performance of the modulator

� Still useful for estimating performance and describing mathematically

� Assumes the added noise source is white (it isn’t)

� Better to add both additive and multiplicative noise sources 

� Careful! While SPICE will show accurate performance (for a particular input 

signal) other methods of simulating DSM may not

A Common Mistake
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� Notice that this equation was derived assuming G1 and G2 are unity 

(and they are likely < 1 to keep the integrators from saturating)

� Re-derive the transfer function adding a comparator gain and see that 

forward (STF) gain goes to 1 and this equation is valid

Comments on low pass DSM transfer function 
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Band Pass Delta-Sigma Modulation (BPDSM)

� A fourth order fs/4 band pass delta sigma modulator (BPDSM) can be 

easily obtained by substituting −z−2 for z−1 in the low pass second 

order DSM. The transfer function of the resulting band pass 

modulator is given as (assuming G1= G2 = 1),
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Redrawing the BPDSM topology

� Implementation of the BPDSM

� The next question we need to answer is how do we implement the 

resonators?

� The problem is getting two delays for the feedback paths
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Changing z−1 to z−2

� The integrator block in the low pass modulator becomes a resonator in 

the equivalent band pass modulator topology. The low pass to band 

pass modulator transformation can be understood as moving the pole 

at 1 to +/− j. The modulation noise for the bandpass modulator can 

now be written as 4
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Changing z−1 to z−2, continued
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� Below is the z-plane plot and magnitude response for z2/(z2 + 1)
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Polyphase Decomposition and Two-Path Implementation

� Polyphase decomposition is a standard DSP technique which results 

in simpler implementation of filters. A filter H(z) can be 

decomposed*

where                             for n=integer multiple of M, otherwise = 0.

* A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, 2nd ed., pgs.180-183 : Prentice Hall, 1999.
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Changing z−1 to z−2, continued

� By using two paths we essentially double the sampling frequency.

� This changes z−1 to z−2

� Note that we are actually using  fs/2 resonators!
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Frequency response of the sections

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

0

10

20

30

40

50

60

70

Frequency (Hz)

M
a

g
n
itu

d
e
 (

d
B

)

Magnitude Response (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

0

10

20

30

40

50

60

70

Frequency (Hz)

M
a
g

n
itu

d
e
 (

d
B

)

Magnitude Response (dB)

Frequency response of 1/(1 + z−1),

note this is a high-pass response.

fs/2

Using two paths, 1/(1 + z−2), note

that this is a band pass response.

fs/4
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Switched-Capacitor Implementation of 1/(1 + z−1), an fs /2 resonator

� A basic building block for 1/(1 + z−1)

� Well (!) actually the transfer function is z−1/2/(1 + z−1)

� This is why we can’t have a non-delaying second stage in our BPDSM

� It’s also why we added a delay to the input in our two-path topology seen 

on page 10
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Simulating an fs/2 resonator

� Poles are right on the unit circle (so we see instability of course)

� All of the simulations in this presentation are found at:

o http://cmosedu.com/cmos1/LTspice/LTspice.htm

o Install LTspice, unzip the simulations in LTspice_cmosedu.zip to the 

desktop and go to \Extras_LTspice\Ch8_MSD_LTspice
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Implementation of a BPDSM at fs/4
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Simulating Operation

� The band pass modulator shapes and moves the quantization noise 

away from the IF at 25MHz. We can observe spurious tones for an 

input of 25MHz. These tones are due to the limit cycle oscillations in 

the system (just like applying a DC signal to a low pass modulator).
Input at 25 MHz

Modulation noise
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� The transfer function for BPDSM is (including comparator gain, GC), 

where the forward gain, GF, = G1G2GC , is 

� By using low pass filters in the simulations the gain values can be 

determined 

� Note that a common mistake is to exclude the comparator’s gain when 

determining the transfer function and thus the stability

Modulator Stability and Parameters Selection
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� Using two delaying resonators is a common mistake found in the literature!

� Adding gratuitous delay in the forward or feedback paths of a feedback system 

makes the system move towards instability

� The difference between a delaying and non-delaying resonator is simply a 

switch in the clock phases (swap the clock connections in the stage)

� This, using a delaying first stage, is also a common mistake found in the 

literature covering the design of low pass delta-sigma modulators

� Note that it can be shown, both mathematically and with SPICE simulations, 

that a modulator using a cascade of two delaying resonators is impossible to 

make stable (so be careful when looking at the published literature!)

A Common Mistake

21

1
−+ z 2

2

1 −

−

+ z

z

Using z−2 here in the numerator is bad!!!



Baker/Saxena 18

Digital I/Q Demodulation

� The band pass modulator can be used for fully digital I/Q 

demodulation in a heterodyne receiver

� In the examples here the intermediate frequency, IF,= fs/4, is 25Mhz

� For this case, the mixing operation is very simple and can be 

accomplished using some simple digital logic 
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Fully digital Implementation of I/Q demodulation

� The output of the bandpass modulator (i.e. +1,−1) is converted to 2-bit 

two’s complement format. The modulator output is then digitally 

mixed using MUXes as seen below. 

Either +1 (01) or −1 (11),

note LSB is always high.
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Digital Mixer Implementation using Selectors (aka MUXes)

� The output of the reference generator is, cos(2πfIFnTs) = cos(nπ/2) = 1, 0, −1, 0, ... 

sequence, which in 2’s complement format is 01, 00, 11, 00, …sequence. 

� Note that the point of doing digital I/Q demodulation is that we move the digital data 

down to a low frequency (for a general communication system, like transmission of 

voice, this may be in the kHz range)

� Low power can thus be obtained and DSP can be used
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Digital I/Q Demodulation, cont’d

� A 2 bit counter with combinatorial logic is employed to generate the cos(nπ/2) 

sequence as shown below. The sin(nπ/2) sequence (=00,01,00,11,…) is generated by 

delaying the cos(nπ/2) sequence by 90º, which is same as delaying it by one Ts 

period (Ts = TIF/4 => 90º delay).
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Example

� An AM modulated cosinusoidal carrier at 25MHz is used as the input to the system 

in order to demonstrate the I/Q demodulation. 

� A cosinusoidal modulating signal with 2MHz frequency is employed. Thus the 

modulated signal is given as,

� Vin= VCM + 0.7·cos(2π·2MHz·t)·cos(2π·25MHz·t)

Plot showing the COS and SIN sequences. Plot showing the AM modulated input used 

for testing the I/Q demodulator.
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� An I/Q modulated signal is described as 

s(t) = Ac · [mI(t) · cos(2πfct) + mQ(t) · sin(2πfct)]

� Here the I component is mI(t)= 0.7·cos(2π·2MHz·t) and the Q component, mQ(t), is 0 (a DC 

voltage of VCM=0.75V).

� Below is an example where we’ve used a modulating signal of 100 kHz (instead of 2 MHz)

� The bottom trace, the I component, shows both the modulated carrier and the final 100 

kHz output after filtering (the Q component output is a DC voltage of 0.75 V)

Example, cont’d

Vin

BPM 

output

I output

Q output

100KHz cosine
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Example, cont’d

� Showing the spectrums of the signals at various points in our receiver. 

� Note the carrier is 25 MHz and the information is offset from the carrier 

by 100 kHz (here 24.9 and 25.1 MHz)

� Note how the in-phase component is shifted down to DC.
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Showing the Signal in the Baseband

� Seen below is a close up view of the I output component seen on the 

previous slide 

� Note that the digital data is still moving at full speed!

� Still need to decimate (reduce the digital clocking frequency)

� Prior to decimating we need to pass the data through digital anti-aliasing 

filters 

o It’s important for low power operation to keep things as simple as possible
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Decimation and Low-pass Filtering

� A straightforward approach to decimation would be to directly use a cascade of biquad low pass filters 

operating at 100MHz followed by re-sampling at a lower clocking frequency

� The cut-off frequency of this LPF will be 100 kHz which leads to a sensitivity (f0/fs) of 0.1% which 

will require very high precision implementation of the biquads (not simple digital coefficients). 

� A better approach would be to decimate the mixer output down to a slower clock using simple sinc filters 

which will relax the precision required for the coefficients of the final biquad LPF

� However we can’t be too aggressive on decimation to reduce the data rates as we need to be very careful 

of aliasing of filtered noise into the baseband. A possible decimation and filtering approach is shown 

below

4↓ 4↓ 4↓

4↓ 4↓ 4↓
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Digital Filtering: One Possibility

� Seen below is a block diagram of the system employing sinc filters as 

the decimation anti-aliasing filters. 
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Digital Filtering: Another Possibility

� Using simple, imprecise, biquads earlier in the decimation process 

reduces hardware and power

� Final SNR is > 100 dB
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Signals at Various Points in the Receiver

� Ideal DACs were used to display the digital filter outputs
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Conclusions and Research Directions

� We’ve talked about the implementation of band pass delta-sigma 

modulators (BPDSM) for use in heterodyne receivers

� Some common mistakes made when designing BPDSM were 

presented and discussed

� Concerns for implementing the digital filtering were discussed

� Research directions include:

� Low power using passive implementations

o Continuous-time circuits using both passive and simple active 

implementations are clearly of future importance

� Parallel paths (> 2) to effectively increase SNR

o Reduces the effects of clock jitter

� Of course the digital filtering is important for both power and size


