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ABSTRACT
A THREE DIMENSIONAL NUMERICAL SIMULATION OF SHORT CHANNEL
MOSFET'S WITH THE EFFECTS OF GATE OXIDE CHARGE®
Russel Jacob Baker, M.S.E.
University of Nevada, Las Vegas, 1988

A three dimensional model is described for a short channel
MOSFET with the effect of trapped oxide charge. The model uses the
finite difference scheme to solve the system of coupled nonlinear
partial differential equations describing the transport of carriers in a
semiconductor. A field dependent mobility is used. A MOSFET with an
oxide charge of 10'%m2 is found to have a drain current of 1.13224
mA at a gate voltage of 0.4 volts, while an oxide charge of 10''em™2
gives a current of 1.13232 mA which is not significant under high
drain bias. The short channel effects such as, failure of current
saturation due to punch-through, are illustrated with |-V plots. The
3-dB frequency for a short channel MOSFET is found to be 4.2 MHZ,
although the reduction of channel length does increase 3 dB frequency

the punch through effect puts a limit on channel length.

* This work was supported by the United States Army Research Office Grant # DAAL
03-87-G0004,
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CHAPTER 1 - INTRODUCTION

This thesis deals with the modeling of short channel metal
oxide semiconductor field effect transistors (MOSFET's) with the
effects of gate oxide charge. Presentday VLSI presents the problem
of smaller and smaller device geometries with higher density. The
“trial and error" method of the past is even less desirable due to the
increase cost of production and development time. For these reasons
computer aided design is essential to the device engineer.
1.1 Short Channel MOSFET's

The short channel effect comes from reducing the channel
length making it comparable to the source and drain depletion layer
widths. This reduction in turn causes the potential distribution in the
channel to depend on both the transverse field, controlled by the gate
voltage, and the longitudinal field, controlled by the drain bias. In
this situation the transverse field is no longer much greater than the
longitudinal field. This two dimensional effect results in a
degradation of the subthreshold behavior, dependence of the threshold
voltage on channel length and biasing voltages, and failure of current

saturation due to punch-through.



1.2  Trapped Oxide Charge

The three dimensional model's of MOSFET's developed in the
past have not taken the trapped oxide charge into consideration. The
effect of this trapped oxide charge is very important when dealing
with short channel MOSFET's due to the small surface area under the
gate region. Inclusion of this effect has made the modeled device
behave closer to the actual device.

1.3  Organization of this Thesis

Chapter 3 of this thesis develops the basic transport equations
of carriers in the semiconductor using a semiclassical approach.
These equations together with the appropriate boundary conditions,
also discussed in this section, give a complete description of carrier
motion.

Chapter 4 discusses the physical parameters, carrier mobility
and carrier generation - recombination. The effects of lattice and
ionized impurity scattering as well as the carrier velocity saturating
is used in the modeling of mobility. The modeling of carrier
generation - recombination takes under consideration Shockley - Read

- Hall, Auger and impact ionization processes.



The method of finite differences used to solve the system of
coupled nonlinear differential equations is discussed in chapter 5.

The transport equations are transformed from continuous 10 discrete
form.

The solution of these discretized semiconductor equations is
discussed in chapter 6. A Newton iteration is used with successive
under relaxation on a reduced problem set. This method reduces and
simplifies the large number of equations that needs to be solved for
each iteration of Newton's method.

The results of three simulations are given in chapter 7. The
results are discussed in chapter 8. For each MOSFET under
consideration plots of electrostatic potential, electron and hole
concentrations as well as several other plots of interest to the
device engineer are given.

Possible future work in this area would be in the simulation of
transient behavior. The model that has been developed could be used,
with little modification, for this type of simulation. Reference
words: MOSFET, Short Channel, Numerical Simulation, Jacobian, Oxide

Trapped Charge, Three-Dimensional, Semiconductor, Solid State.



CHAPTER 2 - LITERATURE REVIEW

Semiconductor device modeling started with Gummel[7] who
modeled a one-dimensional bipolar transistor. The algorithm which is
called Gummels method has been used extensively throughout
semiconductor device modeling history. The advantage of this method
is that it decouples the semiconductor equations. Gummel's method
proceeds as follows; given an initial guess for the electron and hole
concentrations Poisson's equation is solved for potential. The
solution of Poisson's equation is then used to solve the current
continuity and current density equations for an improved estimate of
the electron and hole concentrations. The new updated carrier
concentrations are then used to solve Poisson's equation. This loop
continues until the difference between successive solutions is below
the accuracy level desired. Gummel's method has been used in two
dimensions by Slotboom([8],[9], Mock[10],[11], Heinier[12], Manck[13]
and others. The main difference between these attempts to solve the
semiconductor equations is in the choice of varibles and the
treatment of the carrier continuity equations. Fitchner et. al. [3] have

used the exponentials of the quasi Fermi levels as the dependent



variables in the current density equations while others[34], [35] have
used the quasi Fermi potentials. A comparison of the two sets is done
in [36]. Some authors[37], [38] have used the stream function as a
variable in the continuity equations. The main assumption that exists
is that the recombination term is zero.

There has been many 2-D simulations of MOS devices
[14],[15),[16),[17]. Each of these papers focuses on a different aspect
of MOSFET's. Power MOSFET's are discussed in [14], a finite element
analysis of a MOSFET in [15], analysis of breakdown phenomena in
MOSFET's in [16] and modeling of the avalanche effect in MOSFET's in
[17].

Three dimensional simulation has been carried out by [18&],
[19],[20]. Itis stated in these papers that the main reason for three-
dimensional simulation is due to short channel effects. Until recently
three dimensional simulations were not considered practical due to
the large memory requirement and accuracy needed during the
solution of the large system of algebraic equations, but with
advances in computer resources these requirements have been met. A

three-dimensional finite element simulation of various



semiconductor devices was discussed in [18], three-dimensional
simulation of VLSI MOSFET's in [18] and a three-dimensional
simulation of inverse narrow channel effect in [20].

This thesis is a three-dimensional numerical modeling of a
short-channel MOSFET including the effect of trapped oxide charge.
The oxide charge trapped in the boundary of the semiconductor and
oxide has been reported in [33], and is believed to have a serious
effect on the capacitance-voltage and current-voltage characterics of
short channel MOSFET's. This work is an investigation of this effect

in a numerical modeling enviornment.



CHAPTER 3 - THE BASIC SEMICONDUCTOR EQUATIONS

In order to simulate any semiconductor device the first step is
to derive the partial differential equations which describe the
transport of the carriers in the semiconductor while under the
influence of external fields. The equations that will be derived are
valid for all semiconductor devices although the only concern is with
silicon MOSFET's. The equations can be used for any type of
semiconducting material with the appropriate change of physical
parameters. Also in this section the boundary conditions which will
be used in the simulation are derived.
3.1 Equation Formation

To arrive at the equations which describe transport of carriers
in the semiconductor device the Boltzmann Transport Equation (BTE)
is used. The BTE is given by:

(n-v) + (@-n-E)/m + V(n-k-T)/m =-(n-v)/T

n is the carrier concentration, v is the drift velocity, E is the electric
field, k is Boltzmann's contant, T is temperature, m’ is the effective

mass of the carrier and T is the average collision time. Solving this

equation will give the carrier concentrations and drift velocities.



To use the BTE the motion of carriers has to be treated as
semiclassical[2]. Semiclassical in this context means the carrier
motion in a semiconductor with an externally applied field is
regarded as a series of acceleration ( treated by classical mechanics
) and scattering ( treated by quantum mechanics ) events[3]. The
assumption of a semiclassical nature accounts well for the transport
of carriers in small silicon devices[2].

Fichtner et. al.[3] discussed the applicability of the BTE for the
description of small semiconductor structures and concluded that
silicon devices with active dimensions of 0.1 um or larger can be
described well with the semiclassical BTE approach.

The operation of a semiconductor device with dimensions
greater than 0.1 um can therefore be described by solving the BTE.
However solving the BTE directly is impractical, therefore several
simplifying assumptions must be made. The first is the quasi static
local potential approximation[4]. This approximation changes the
problem from space and momentum to space alone. Other
approximations are; collisions are instantaneous, carrier-carrier

interaction is negligible and the scattering probability is independent



of external forces. Using these approximations the current density
equations are derived.

The basic semiconductor equations needed for modeling short
channel MOSFET's are Possion's equation, current density equations
and the current continuity equations.

3.1.1 Poisson's Equation

Poisson’s equation is:

V:-D=p (3-1)
and it describes the electrostatic potential in a semiconductor.

The electric displacement vector D is related to the electric

field vector E by:

D=¢E (3-2)
where € is the semiconductor permittivity. If the permittivity is
time independent this relation is valid for all materials. In a
semiconductor with uniform composition €_ is constant and the
Poisson equation becomes:

eVE=-¢7%y=p (3-3)



Vv is the electrostatic potential and is related to the electric field as
given by:

E=-V (3-4)
and p the total space charge, assuming complete ionization at room
temperature is given by;

p=-g(n-p+C) (3-5)
where

C=Ny-N, (3-6)

N is the number of donor atoms, N, is the number of acceptor atoms

and p and n are the hole and electron carrier densities, respectively.

3.1.2 The Current Density Equations
The current density equations for electrons and holes, derived

from the BTE with several assumptions, are given by:

J_ =au nE +qgD Vn (3-7)

J, = aupE -aD,Vp (3-8)
where D and Dp are the electron and hole diffusitivities respectively,

and p_ and u, are the electron and hole mobilities. The diffusion

10



coefficients and mobilities are dependent on the electric field E,
which is discussed in chapter 4.
Assuming a nondegenerate condition, the diffusion coefficients

and mobilities are related by the Einstein relation[5]:

D, =k, kT/q (3-9)

D, =k, kT/q (3-10)

where k is Boltzmanns constant and T is the carrier temperature in

Kelvin.
To describe carrier densities the Boltzmann approximation will
be used. This approximation is valid for nondegenerate materials and

is given by:
n=n,exp[q( ¢ - dp)/ KkT] (3-11)
p =n,exp[q( dg - ¥ )/ KT] (3-12)

where n, is the intrinsic carrier density and ¢ is the Fermi potential

under equilibrium conditions.

Under non-equilibrium conditions Fermi potential is replaced
by &g, and d}Fp which are the quasi Fermi potentials for electrons and

holes respectively. Equations (3-11) and (3-12) then become:

1



n=n exp[q( ¥ - dg,) KT] (3-13)
p = n;explq( dg, - ¥ )/ KT] (3-14)
The product of (3-13) and (3-14), nand p, is
np = n2 exp[( Eg, - EFp]fkT] (3-15)
This equation shows that the difference in the quasi Fermi

level indicates how the pn product varies from its equilibrium value

niz.

3.1.3 The Current Continuity Equations

The current continuity equations are given by:

V. -q20 =qR(¥.np) (3-16)
ot

V-J,+q2p =-g-R(¥,np) (3-17)
ot

R( ¢,n,p ) is the recombination and generation difference. This term

takes into account different phenomena such as thermal generation,

generation due to impact ionization and recombination due to traps.
Using equations (3-3), (3-7), (3-8), (3-16) and (3-17) the

current flow and potential within a device can be described. This

12
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simulation will be steady state, although it could be adapted to a
transient simulation, so that all derivatives with respect to time are
set to zero. Substituting (3-7) and (3-8) into (3-16) and (3-17) and

using (3-8) the following equations are realized

?-(Dn‘?n-unn‘?¢]-ﬁ(¢,n,p} =0 (3-18)

V(D Vp + PV Y] -R(,np) =0 (3-19)
and the Poisson equation is
72y -g/e(n-p+C)=0 (3-20)
Equations (3-18), (3-19) and (3-20), are a system of coupled
nonlinear partial differential equations in terms of n,p, and &, with
the appropriate boundary conditions this system describes the
behavior of short channel MOSFET's.
3.2 Boundary Conditions
The set of equations given by (3-18), (3-19) and (3-20) subject
to the following boundary conditions are solved.
3.2.1 Source and Drain Contacts
The source and drain contacts are assumed to be ohmic

contacts. In most simulation programs these contacts are assumed to
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be at thermal equilibrium with a vanishing space charge region. This
implies:

np-n2=0 (3-21)

n-p-C=0 (3-22)

These two equations can be put into the form of a Dirichlet

boundary condition for the electrons and holes, as given by (3-23) and
(3-24).

n=[/(C?+4:n?) +C)2 (3-23)

p=[/(C*+4:n?)-C)2 (3-24)
The boundary condition for  is given by

Vo=, + by (3-25)
where y_ is the applied voltage at the contact and , is the built in
voltage at the contact. ¢, is 0 V for source contact and ¢ is the drain
voltage at the drain contact. The built in voltage is given by

by =(kT/q) « In(Ng/n,) (3-26)

3.2.2 Gate Contact and Iterface Trapped Charge

At this boundary there is an oxide-semiconductor interface. At
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this interface fixed charges exist. These are the interface charges

and the fixed oxide charges.
The interface charges are due to Si-SiO, interface properties

and are dependent on the chemical composition of this interface. The
value of the interface trapped charge is on the order of 10'%m~[6)].

The fixed oxide charge is located within approximately 30
Angstrom of the interface and is treated as if it were at the
interface[33]. This charge is fixed and cannot be charged or
discharged over a wide variation of surface potential. The value of
the fixed oxide charge is on the order of 10'%cm™[6].

At this oxide-semiconductor interface Gauss's law in

differential form must be obeyed or:

Eaem 'a—]b‘
on

. €insu " IclIim (3'27}
an ,

€.em and €, . are the semiconductor and insulator permittivities

respectively and n is a vector normal to the surface. Q,, is the

trapped interface charge at the semiconductor - insulator interface



which is assumed to be the sum of the interface charge and fixed
charge(2:10'% cm™®). Gauss's law states that the electric

flux(displacement vector) passing through any closed surface is equal

to the total charge enclosed by that surface. From Gauss's law the
boundary condition at the gate for electrostatic potential, , can be
determined. The boundary conditions for the electron and hole
densities are given by[6]:

n=n. expla (¥ - ¥p) /KT] (3-28)

P =Py, €XP[-Q ¥ /KT] (3-29)

where Moo and Ppo are the equilibrium values of electron and hole

concentrations respectively and 1y is the potential due to the drain

bias.

3.2.3 Artificial Boundaries

Artificial boundaries are imaginery boundaries which are used
to isolate the simulation domain, refer to figure 1. The artificial
boundaries are chosen such that the device is selfcontained which is

equivalent to assuming that the current density normal to the surface



is zero. In other words, at these boundaries the following hold:

24 =0 (3-30a)
2n
on =0 (3-30b)
on
2p =0 (3-30c)
on

where n is the vector normal to the boundary. Itis assumed that
there is no variation of ¢, n, or p from the chosen boundary to the

edge of the device.

17
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CHAPTER 4 - THE PHYSICAL PARAMETERS

The system of nonlinear partial differential equations
discussed in chapter 3 must be solved in order to simulate the
behavior of the device. The purpose of this chapter is to elaborate on
the physical parameters of these equations; the carrier mobility and
the recombination-generation terms. Any simulation of a device
relies heavily on the available models for these physical parameters
and the accuracy of these models.
4.1 Carrier Mobility

Mobility is defined as the velocity of a carrier divided by the
electric field applied to that carrier. There are many different types
of scattering processes, lattice scattering, ioionized impurity
scattering and saturation of drift velocity with high electric field,
which contribute to the overall mobility. Mobilities are described in
terms of a relaxation time. The relaxation time is a measure of the
rate of return to the state of equilibrium from a disturbed state. The
mobilities from each process add inversely to give the overall
mobility.

One dominant scattering mechanism is interaction of carriers
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with the thermally generated phonons which are vibrations of the
atoms in the crystal. These thermally generated vibrations are
dependent on temperature. A model given by Sah et al is claimed to
give accurate values of mobility in silicon in the temperature range
of 4.2 to 600 degrees Kelvin[22], as given by equations (4-1) and
(4-2).
p L= 1/(1/(4195°(T/300) " ®)+1/(2153*(T/300)>'3))
(4-1)
M- = 1/(1/(2502° (T/300) "5)+1/(591*(T/300)2-25))
(4-2)
The symbols p, b and p_" donote mobilty due to lattice scattering for

electrons and holes respectiviey. It is stated in [22] that the
additional effort for more elaborate formulae based on complicated
theoretical models are not justified. The superscript L denotes
lattice scattering.

The next scattering mechanism that will be used in the model
of carrier mobility is the ionized impurity scattering. There has been
a few models published for this type of scattering[23], [24]. These

models are not independent from the lattice scattering, therefore a



model that takes into account both of these scattering mechanisms
must be used. One such model has been proposed by Scharfetter and
Gummel[25]. This model predicts a combined mobility due to lattice

vibrations and ionized impurities as given by:
pn_pl-' = "ln.pL'h"f{-H‘NDf(Cn,prﬂ +Np/S,, )
C*'=3:10'%cm™® § =350 (4-3)
f_4.10%em2 S =
C,'=4-10"cm Sp 81
This model gives an accurate account of the carrier mobility

taking into account the lattice and impurity scattering mechanisms.
The final effect that will be considered is the saturation of the
drift velocity for high electric fields. When this occurs the mobility
will decrease with increasing electric field. The mobility taking into
account lattice scattering, ionized impurity scattering and high
electric fields has been approximated by [25] and is given as:
pHE=pb/(14C1(C™®'4+CI/S)+(E/A)%/(E/A+F)+(E/B)?)
(4-4)
The varibles in (4-4) have to be imagined with the subscripts n or p.

For the varibles A,B and F, [25] recommends the following values for
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silicon at 300 K:

A =3.5-10°V/om, B =7.4-10°V/cm, F =8.8  (4-5)

A=6.1-10°V/cm, B =2.5-10%V/em, F =1.6

There are two other basic types of scattering mechanisms that
are not included in this model for mobility, carrier-carrier and
neutral impurity scattering. These scattering effects are neglible
compared to the three that have already been discussed and the
inclusion of their effects would only increase the complexity of the
model not the accuracy. In making this statement it should be
remembered that one of the assumptions that was used to derive
equations (3-18), (3-19) and (3-30) was that the carrier-carrier
interaction is neglible.
4.2  Carrier Generation-Recombination

The importance of carrier generation-recombination phenomena
is dependent on the particular device under consideration. Fora
bipolar device recombination is very important in determining the
current gain whereas in a unipolar device it is of small importance.
But if the device will be operating under a high field condition this

term becomes very important. This is due to the generation due to
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impact ionization and the generation-recombination due to Auger
phenomena.

The most dominant recombination mechanism in silicon is an
indirect process involving a trap center somewhere in the energy
bandgap. This mechanism is the Shockley-Read-Hall generation -
recombination. There are four partial processes involved[26];

1. electron capture: an electron from the conduction band is

trapped by an unoccupied defect which becomes occupied.

2. hole capture: an electron from an occupied trap moves to the
valence band and neutralizes a hole. The trap becomes
unoccupied.

3. hole emission: an electron from the valence band is trapped
by a defect, thus leaving a hole in the valence band and an
occupied trap.

4. electron emission: an electron from an occupied trap moves
to the conduction band. The trap becomes unoccupied.

The Shockley-Read-Hall generation - recombination rate is
given by [29], [30]:

RSM= (np - n2):( T -(n+n,) + T(p+p,)"  (4-6)



with

Ty = 1fr.:-'p5HH (4-7)

T = 1/c SAH (4-8)

T, and T are the carrier lifetimes and G‘HSHH and U,pan are defined as

the capture rates[26].

The next type of recombination - generation that will be added

in the simulation is Auger or three particle transistions. The Auger
partial processes can be listed as follows[26];

1. electron capture: an electron from the conduction band
moves to the valence band, transmitting the excess energy
to another electron in the conduction band. In the valence
band the electron recombines with a hole.

2. hole capture: an electron from the conduction band moves to
the valence band transmitting the excess energy to a hole in
the valence band, which moves away from the valence band
edge. The electron recombines with a hole.

3. electron emission: an electron from the valence band moves
to the conduction band by consuming the energy of a high

energetic electron in the conduction band and leaving a hole

23
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in the valence band.

4. hole emission: an electron from the valence band moves to
the conduction band by consuming the energy of a high
energetic hole in the valence band. A hole is left at the
valence band edge.

In any of these transistions three particles are involved. The total

net generation - recombination rate is given by[31]:
RA= (o AVn + & AVp)-(n-p-n?) (4-9)
o AY and crp‘“” are called the Auger coefficients and have the values:
AU 4031 5
o AU 2810 (4-10a)

.:rF;W =9.9.10 (4-10b)

The last type of generation that will be used in the model is
impact ionization. Impact ionization is the most important
phenomena in junction breakdown. There are two partial processes
involved[26];
1. eiectran emission: an electron from the valence band moves
to the conduction band by consuming the energy of a high

energetic electron in the conduction band and leaving a hole



in the valence band.

2. hole emission: an electron from the valence band moves to
the conduction band by consuming the energy of a high
energetic hole in the valence band. A hole is left at the
valence band edge.

Impact ionization generation can be expressed as:
G = /(e | Jy | + 2|9y ) (4-11)

where o, and «_ are the ionization coefficients and Jn and Jp are the

p

current densities. The ionization coefficients are given by:

o, = a M-exp(-E, °/E) (4-12a)
" inf, ¥ ril o

o, = ox"exp(-E CVE) (4-12b)

o™ =1.0-108cm™ E _¢=1.66-10° V/cm (4-12c)

apinf =20:10%cm™ Ep“'“-=1 .98-10% V/iem (4-12d)

Equation (4-11) together with (4-12) is used for simulation of impact

ionization.
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CHAPTER 5 - THE DISCRETIZATION OF THE SEMICONDUCTOR
EQUATIONS

Analytical solutions for the set of differential equations
described in chapter 4, if not impossible, is extremely difficult to
obtain. The first step in obtaining the solution of such system of
equations is discretization of this system. To do so the differential
equations are approximated by finite differences. This changes the
system of equations from nonlinear coupled partial differential
equations to a set of discretized, nonlinear coupled equations. The
nonlinear discretized system is then linearized using Taylor's series
for the functions describing the discretized equations. This forms
the basis for Newton iteration scheme. The coupling of these
equations is dealt with in the iteration cycles of the Newton iteration
scheme which is described in chapter 6.

In the finite difference scheme the simulation domain will be
rectangular with meshlines parallel to the three coordinate axises.
At each intersection of these meshlines the three equations, (3-18),
(3-19) and (3-20), is written in discrete form. Together all of these

equations for each point will be used to solve iteratively for the
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values of |, n and p.

51 Finite Differences

In the rectangular domain the number of meshlines in each
direction will be labeled NX, NY and NZ in the x direction, y direction
and z direction respectively with a uniform mesh, refer to Figure 2.
The discretization will be the classical seven point method which is a

good compromise between complexity of discretization and the
accuracy of the result. The distance X, is assumed to be the distance
from the origin to the i meshline parallel to the y axis. A similiar
description can be made for y;and z_. The following abbreviations

will be used:

hi= X4 =% (5-1)
kj = j+1 - y’l {5'2}
I = Zma1 = Zm (5-3)

uj.j_m - LII:J(P 'j"j. Zm} [5‘4}
Uitz m = U((Xjyq+ )12, y;, 21) (5-5)

Uijerzm = Ul (¥ + ¥)/2, 2,) (5-6)
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Ui metre = u(x, Yii (Zmet + Zm)/2) (5-7)
This discretization scheme is the simplest with the local error being
controlled by the mesh spacing.
5.1.1 Poissons Equation
Poissons equation is discretized first. The poisson equation
can be written explicitly as:
A2+ ¢ + yZ)-n+p+C=0 (5-8)
where **, Y and ** are second order partial derivatives in
the x, y and z directions respectively. The first order partial

derivatives can be replaced with[28]:
Tl ijm = N‘imz,j,m = Wiapym (&0 +h ) +

O{h}”l'u | ij,m {5"9}
i wm = Wiszm™ Yigam) @06+ K ) +
O(k)- ¢ | (5-10)

i,jm
¢‘z|i,j,m '{¢i4.m+1;2' ¢i,J,m-1E}'(Z(Im+ 'md”*"

O“}'d’uhj‘m {5'11}

The truncation error is controlled by the mesh spacing.
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Substituting (5-9), (5-10) and (5-11) into the Poisson equation the

following is realized:

A2 (W amym= Vim0 +h )+
(W ijerzm™ Wigram ) (@K +k4)  +
Wzi,],mnfa' “L’zi.j.m-wz]'w“m +104) -

Mim*Piym* Cijm ™ =0 (5-12)
neglecting the higher order terms. Replacing the first order partial

derivatives in (5-12) with:

'J’xi+1a'2.j,m'{ Lt"'i-|-1_j,m & ljm}"fh * D(hz] ll"“M||i.rﬂ

(5-13)

2
WViprzm=(Vigam - Vg + ORI WM | 0

(5-14)
Vijmeiz= (Viime = Viga)ln+ OG22
(5-15)
the Poisson equation in difference form can then be written as:

AP T jm ¥igm V1= (i Yig jmd/Niq) *( &0+ 0 ) +




'_h’k ( ].'"k. 1) (2 (k; + kj_1}] +

“ﬂ‘ri,jn.m ij,m L]m |]1m

{H’i,j,mﬂ' d"i.j,m }’F[m 5 { 1'I'rl.j‘r'r'f lJ"'t,j,rrl—‘l:l‘”m-1} '{Eﬂ:lm * 1m-1” +

n. + C (5-16)

l.]m Ijm

Equation (5-16) is the discretized form of Poisson's equation that is
used in the simulation.
5.1.2 Current Continuity Equations
The current continuity equations with the current density
equations are written as:
(Dun* - pandX )+ (DY p ¥ )Y + (D n® - g ng? ) -
R(y.np) =0 (5-17)
(DgP* - upu™)* + (D p¥ - ppu¥ )Y + (D p* - upu?)? -
R(y,n,p) =0 (5-18)
Using the approximation for first order partial derivatives given by
(5-9), (5-10) and (5-11) the three dimensional current continuity
equation for electrons can be written as (5-19).
[(-do) | w12im ™ (Y | rzgml (20 + 0y))

O(h)-d_** +



I{‘Jn-;] |1,j+1f’2,rn 3 {'Jny} fi,j-wz,m]'{z"r{kj + |‘1-1”
+ O(k)J, 7Y +
[(-dz) ‘ ij,met2 " (Jpz) I .jimiizi'(m“m +Ina))
+ O()d,* - R(¥,n,p) =0 (5-19)
Jox Joy @nd J,, are the scaled electron current densities in the x, y

and z directions respectiviey. The current densities in each direction

may be written in terms of first order derivatives as[28]:

Joy = KNy - D -n* (5-20)
Joy = Honey - D onY (5-21)
J, =u,ny%-D -n (5-22)

To discretize the continuity equation for electrons a Taylors

series is used on the current density. This yields the following:
JouX€lXi Xi 1] ¥ 20) = Jp | iwi2jm+ X=X - h/2):

'Jnxx| i+1/2.m i D(hE}. Jnx“’mfz,j,m {5'23}

Joy( X YEI; ¥jiq) Z0) = Jrqr| isrzm* (Y - Y- k/2):

J.y

o lis1zm* OKY I i1 m (5-24)
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Jn:(xk' Yj' z'E{‘.:rn. zm+11} - anl Lpmeti2 ¥ (z- Zn- Im’f"?]'
o igmset2 ¥ O(1%): I, liJ,ma-‘n!E (5-25)
The higher order terms O(h?), O(k?) and O(I¥) are ignored and the
following equality is made on the interval [x;, x, .[:

HoneyX-Don* = | +(x-x-h/2)d_X|

i+1/2,.m +1/2jm

(5-26)
n( x,, Y z)= Miim (5-27a)
n(x,q Vi z)= Metfm (5-27b)

The assumptions used in equation (5-26) are that the partial
derivative of the electrostatic potential between two mesh points is
constant and the scaled Einstein relation is assumed to hold for the
scaled carrier diffusitivities and mobilities.

Equation (5-26) is a first order differential equation with two
boundary conditions(5-27). The solution of (5-26) with boundary

conditions given by (5-27) is:

-

Jx | i+1/2,jm "= (@, | i+1r2.j.m'5(¢u.m ¥ ¢i+1ij.m}'nl,j.m

B(¥is1im = Yijm) M jmd/; + D(0.5-COth((;; ¥4 5 )/2)
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- M¥i5m = Yiar ) Ine |isr2m (5-28)
B(x) is the Bernoulli function[28] which is defined as:

B(x) = x/(exp(x) - 1) (5-29)
Under the assumtion that *i.j.m only differs by O(h) from its nearest

neighbor the last term in (5-28) is O(h?). Using equations (5-28) and
(5-19) and ignoring the last term in (5-28) the discrete form of the
continuity equation for electrons can be written in the x direction.
The discretized continuity equation equation in the y and z directions
are completely analogous. The descretized continuity equation in

three dimensions is then given by:
Mt jm’ D,| w172,m B(¥iy .|,m"4'i¢',rrJ‘(kj.1 * kjmm-l"'lm}mr *
niJ+1.m'Dn| sr2m B g m Vi m) (Mg + P+, +
M jme1Pn | ihme12 BV mat Vi m) (g + D)+ +
"‘M.j,m'Dn' Hrz,J,m'B{*i-i.j,m"l’t,j.m}'{kj-1 + Rl ) hy g +
“i,H,m'Dn|i.j-m.m'E{‘i’t.j.i.m“"i,j,m]":hiq + M)+, +
"i,j.mr‘Dnl gme12 B ma ) (M + hi}{kjd"'kj}ﬂmd -

ni,],m'{nn | i+1E.}.m‘B(d'l.j.m"l"in,j.m)'[kj-i + kjmﬂ"l-i"'Im”hl +

33



D“l i-i+1f2-m-B(¢i.].m i+1, m:.r I:h| [~ h” m- ‘l""l }"llk *

D,| B(Y

nlijm+1/2 ]'[hj_| + hl}{k]_-"Fk]}.‘rlm +

P me
D,| i.wz,j_m‘EWu,m'*iJ,j,m]‘(kj-1 * kjmm-1+lm)’lrhi-1. *
Dn|i.j-112,m'B{‘i"i,j,m i1, rn} (h }(Im-1+|m}’rkj-1 +
D,| m1r2 B ¥ mea) (M + MK+ 5) -
R|i,j,mf‘1’-”-m‘{hi-1 + hj}(l-cj_1 + kj}(rm_1 +_)/8

=0 (5-30)

Similarly the discretized continuity equation for holes can be written

as:
pl+11i.rr1'Dpl wrr2gm BOV Wiy ) (Kg + K)o+ +
D

Pijst,m p| i.j+1!2.m'B':¢i,j,m"J"|,]+1rm}‘(hi_1 + hi}“mq"'lm:"'fkj +

Pijmet Dol ijme12 BOVim ¥ man) (Mg + MK 4K +
p i-1,]s m p| i-1/2,j,m Bwi‘j.m i-1 lm] {k + kj]{lm-'l*.lmyh';-‘] +
p]*j'1lm-DP| i-j"‘-"E.l‘ﬂ-E{wl] m *ij-1 m} {h + h}ﬂ }J"H +

pi.j,m—1'Dp!i,j,m-ﬂz'BHIljm Lpl.]l‘l'l 1’ { §E h}(k +kjmm-1 B

P’ Op 12 Bl ) (K g + K)o gV, +



. Bl jor,mVigm) iy + M) 1 +)/; +

pl iL,j+1/2,m

Dp| i.j.rn+1xz'B{‘!’i,j,mﬂ"bi.j.m}'{hm * hi}{kj-i"'kj}”m s
Dp| 12 B mVigm) Ky + K+ Dy +
Dp| i,jv1.-'2,m'B{¢i.j-1.m'u"i.j:.m}-(hi-T i hi}“m—#lm}‘;ki-'l ¥

D B4 oy ) (Mg + D)+ ) -

pf ijm12 2\Yijm-
R m(enp)-(hy + h) (K +K)(  + )8
=0 (5-31)

Eauations (5-31) and (5-32) are the discretized form of the
continuity equations with the current density equations substituted
in.

5.1.3 Boundary Conditions

The discretization of the boundary conditions at the source and

drain is simple because values at one point are involved only. From

equations (3-18), (3-19) and (3-20):
Niny,m = VCinym+ 402) + C; yy )2 (5-32)
Piny.m = V(Ciny m+ 402 - C, ny. /2 (5-33)

WiNY,m = Wy iNY,m + ¥l iNY,m (5-34)



The mesh line NY is the point where drain, source and gate contacts
are located.

At the gate:
€com Winy.m ™ Yiny-1.m’ YNy = Ynv-1) = €ins (VD ¥ Ny mtins

-Q

int

(5-35)
where Vg is the applied gate voltage and t,__ is the oxide thickness,

and ¥, v - IS the potential under the oxide at the boundary of the

simulation.

The artificial boundaries are at i=1, i=NX, j=1, m=1, m=NZ. At

these boudaries , n and p are equal to there closest neighboring mesh

point. This is the same as saying the derivative normal to the
boundary is zero.

5.1.4 Scaling

In order to get faster convergence scaling the dependent
varibles ¢, n and p is necessary. These dependent varibles are of
greatly differing orders of magnitude. DeMari[27] gave a standard
way of scaling. This method of scaling was discussed and compared

with a "better” method in [28]. The distance is scaled with the Debye
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length x, potential is scaled with kT/q (¥,), the carrier

concentrations are scaled with the maximum doping concentration C_,
the diffusion coefficients are scaled with the maximum diffusion

coefficient in the simulation domain D, the mobility is scaled with
the D /¥, and the recombination - generation term is scaled with

D,"C,/x,2. So now equations (3-23), (3-24), (3-25), the basic

semiconductor equations scaled, look like:

A2.72y -(n-p-C) =0 (5-36)

V+(D Vn-pu nVi)-R(y,np)=0 (5-37)

V+(DpVPp - K pV¥) - R(¥,n,p) = 0 (5-38)
where

A=y ef(x,2q C) (5-39)

The biggest effect this scaling has is on the carrier concentrations
and doping concentrations. The poisson equation is multipied with a
factor approximately 10°'* depending on the device and operating
conditions while the continuity equations with the current densities

substituted in are multiplied with approximately 10°°.



5.2  Designing a Mesh

Figure 1 shows the structure of a short channel MOSFET with
channel length L, width Z and source and drain junction depth of rj.
The source and substrate bias are connected to ground(0V).

Figure 2 shows a representation of the mesh used in this
simulation. When designing a mesh for a simulation, the number of
mesh points should be greater in the regions of the device where
varibles are changing in a short distance, such as, in the vicinity of
drain, source and surface region of the channel. The main requirement
of the mesh spacing is that it gives the desired accuracy for such
regions. After using a nonuniform mesh in this simulation it was

changed to a uniform mesh for reasons of simplicity.

38



CHAPTER 6 - SOLUTION OF THE DISCRETE SEMICONDUCTOR
EQUATIONS

The Poisson and continuity equations for electrons and holes
have been discretized. The next step in the simulation is to solve for
the potential, electron and hole concentrations at each point. The
method of solution is an iterative technique called Newton's method.
Section 6.1 of this section discusses the Newton iteration applied to
the semiconductor equations. Section 6.2 discusses the numerical
instabilities. Section 6.3 discusses the initial guess needed for
quicker convergence of the iteration.
6.1 Newton's Method

To explain Newtons method applied to the semiconductor

equations the notation will be defined first.

F,(¢,n,p)=0 (6-1)
Fo(v,n,p)=0 (6-2)
Fa(¥,n,p)=0 (6-3)

F, denotes the discrete Poisson equation, F, and F, are the discretized

continuity equations for electrons and holes, respectiviey.
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Using Taylors theorem and neglecting the higher order terms

the following may be written[39]:

(F, 6y + F,"5n + FPép)™* = -F, (4", n', p)

(6-4)
(F,64 + F"8n + F,Pop)™! = -F (4", n', p)

(6-5)
(Fyu84 + F8n + FPop)*! = -F (4", n', p)

(6-6)

The correction vector for the r-th iterative is given by:

Sl =yl -y (6-7)
on" =n™'-nf (6-8)
op" =p™! -p (6-9)

The unknowns &+, 6n and &p at each point are found and added to ¢, n
and p to give the updated solution or in other words, if |’ is a solution
then ™' is a better solution if ™' = ¢ + 6". Rearranging terms in
equations (6-4) thru (6-6) yeilds:

F,¥64™! =-F,(v',n", p') - F,"6n" - F P5p'

(6-10)
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Fnan™! = -F, (4", nf, p) - Fpe 80" - F,Pép"
(6-11)
F,P6p™! = -Fy(4f, ', p') - F346 4" - Fynon’
(6-12)
or to resubstitute the Taylors series expansion and combine like
terms on the right hand side of (6-10), (6-11) and (6-12) yields[39]:

F¢84™ = -wF, (v, n"+ &0, p'+ 6p") (6-13)

FE'".Snr+1 = -wF,(b"+ S¢™!, n'+ 60", p'+ 6p")
(6-14)
FaPop™! = -wFy(u"+ 64", n+ 6n™, p'+ 6p)
(6-15)
The factor co is the under relaxtion parameter which is between zero
and one. The term <> should be different for each equation[39]. The
parameter slows the convergence of the overall solution so that the
equations will not diverge due to a poor initial guess. Since the
number of equations that is solved is so large rounding errors become
significant and can effect the updating of the solution. For this

reason the under relaxation is necessary. In other words, using under



relaxation the updated solution does not change radically at the price
of slower convergence. This system of equations is solved iteratively
until the desired accuracy is attained.
6.2  Numerical Instability and Convergence Problems

The Newton method in conjunction with under relaxation
discussed in the last section worked well for low bias conditions, but
not for higher bias conditions. If the biasing conditions are such that
the device is punched through convergence will be even more difficult
to obtain. A simple method for determining if the device is punched
through is given by Sze[6]. He uses a abrupt junction approximation to
determine the width of the drain depletion layer. This width is given
by (6-16).

Wp=V/((2e/aN,) (Vp + V) (6-16)

With a shorter channel length a smaller drain voltage can cause punch
through.

Another reason for the poor convergence of Newton's method
was due to the greatly differing values of the dependent varibles. To
overcome these problems a linearization scheme of the following was

used[7],[28):
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V2™ - wo-(nep)(¥™*'-4") - (n-p+C)=0

(6-17)

Similarily the current continuity equations become:
Vd ™ - wR(n*1-n")-R=0 (6-18)
7od, ™! - weRe( p*'-p')-R=0 (6-19)

When the solution converges, x**' = x¥, the added term becomes zero.
This type of scheme was found to work very well for the discretized
semiconductor equations. The method used to solve the equations
after this linearization is a strongly implicit procedure. This method
for the solution of very large sparse matrices was developed by
Stone[40]. The Numerical Algorithm Group, NAG, routine DO3ECF is
used. This NAG routine uses Stones method. The method of
linearization disscussed in conjunction with the NAG routine worked
well at high and low biasing voltages.
6.3 Initial Guess

For quicker convergence and usually a requirement for
convergence at all, an initial guess must be supplied in conjunction
with Newton's method. The particular model which is used for the

initial guess of this simulation is given by Yau[32]. The drain



depetion layer width is determined by abrupt junction approximation
given by:

Wp=/((2€ /aN,)«(Vp + Vi) (6-20)
and the source depletion layer width is given by:

Wg=/((2€ /aN,) (V) (6-16)
The n doped regions under the drain and source are assumed to be
equipotential areas so that the electron and hole concentrations are
constant. For finding the initial guess in the drain region equation
(6-17) is used.

b=y exp((x,2+y,2)/W,) (6-17)
¥, is the potential at the drain substrate interface, x, and y, are the x
and y distances from the drain substrate interface. For n and p use
equation (6-17) with y  replaced with the electron or hole density at

the interface. Simiarly in the source region use equation (6-17) with

W, replacing Wp,. This initial guess is used to generate values for the

mobility and recombination.
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CHAPTER 7 - RESULTS OF SIMULATIONS

In this chapter the results of three simulations are presented.
The silicon MOSFET's used in the simulation have been constructed
from typical devices being fabricated in industry at this time[6]. In
section 7.1 a MOSFET with no external biasing conditions will be
modeled. This is followed by two simulations with external biasing
conditions. At the end of this chapter a comparison is made between
a MOSFET with and without oxide charge to demonstrate how this
charge effects the drain current. Also at the end of this chapter are
plots of input capacitance vs. drain voltage, transconductance vs.
drain voltage and drain current vs. drain voltage, which are used to
investigate the dependency of cutoff frequency of the device on the
channel length and doping concentration of the channel.
7.1 Simulation of Unbiased MOSFET

The MOSFET that is simulated has the source, gate and drain
contacts connected to ground, OV. The channel length of device 1 is
one micrometer, substrate doping of 10"5cm™ and drain and source
doping of 10'7cm™. Table 1 lists the parameters for device 1. The

operating temperature is assumed to be 300 degrees Kelvin.
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Figure 3 shows the log of the doping profile for the device.
Constant surface diffusion process has been simulated within the
simulation program. The inclusion of surface diffusion process in the
simulation helps give more accurate results.

Figure 4 shows the electrostatic potential distribution for the
device. The potential distribution consists only of the built in
potential within the device due to the p-n junctions at the source and
drain contacts.

Figure 5 shows the concentration of electrons in the device
with no applied potential. The z axis in the Figure is the logrithm of
the electron concentration. The distribution of electrons is only
affected by the built in potential of the device. Figure 6 shows the
hole concentration which is also affected by the built in potential.

Figure 7 and 8 show the electron and hole mobility
respectively. As was mentioned earlier these mobilities are field
dependent which takes into account the effects of scattering
mechanisms such as lattice, impurity scattering and velocity
saturation due to high electric field. The mobilities become less in

the region of the source and drain due to the higher doping
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concentration and electric fields in that region. The mobilities in the
bulk of the device are approximately 1375 cm?V-'s™! and 465
ecm?V-'s™ for electrons and holes respectively.

The net recombination/generation term shown in Figure 9 has

been transformed using:
z = Log, (1 +rg-107"8) (7-1)

where rg is the net recombination/generation term. As would be

expected the only recombination is in the area of the source and drain

regions. This small amount of recombination is negligible and had
very little effect on the simulation results. Figures 22 and 23 show a
comparison of |-V characteristics with and without recombination.
At this point it should be pointed out that the main process of current
transport in a MOSFET is drift. The diffusion process is usually
negligible and some simultation programs for MOSFET's don't even
take it under consideration[38].

The final plot, Figure 10, in this simulation is of the magnitude
of the current density. In determining the drain current the current
density parallel to and directly under the gate region is used|3].

7.2  Simulation of a Biased MOSFET
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In the preceeding section an unbiased MOSFET was presented.
The plots given are of interest to the device engineer but of no
importance to the applications engineer. The applications engineer is
interested in how the device operates under certain applied voltages.
The MOSFET simulated in this section has the same device parameters
as the previous section with the exception of the substrate doping

which is 7-10'3, refer to Table 1. The applied voltage at the drain is

0.5 volts and at the gate is 0.2 volts. The doping profile is shown in
Figure 11 with the same description as was previously given.

The electrostatic potential for device 2 is shown in Figure 12.
The saddle point between the drain and gate has been shifted towards
the source. This shift is due to the increase in the drain potential.
The force on carriers in the drain region is greater than in the source
region. This inequality causes the electrons to migrate towards the
drain.

The electron concentration for device 2 is shown in Figure 13.
The z axis is logarithmic. The channel region has an accumulated
layer of charge which is approximately one million times smaller

then the concentration of electrons in the drain and source areas.



This layer of electrons is the path by which the drain current flows.
From this plot it can be concluded that the gate surface is only mildly
inverted. Figure 14 shows the corresponding concentration of holes.
Figures 15 and 16 show the electron and hole mobilities under biased
conditions respectively. The carrier mobilities under biased
conditions, Figures15 and 16, are lower than that of the unbiased
condition, Figures 6 and 7. This is due to the higher potential
distribution for device 2. This higher potential increases the
scattering of carriers and thus lowers the mobility.

The recombination/generation term for device 2 shown in
figure 17 has the same transformation to the z axis as was given
earlier. The recombination in this device has one significant point
which lies in the region of the drain channel region. This plot
illustrates that the recombination takes place mainly in the drain
region. This recombination is due to the large potential gradient that
exists in this area.

The magnitude of the current density is given in Figure 18. The
current density in the direction from the source to drain determines

the amount of drain current[3].
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7.3 Effects of Gate Oxide Charge

Figure 24 shows drain current versus gate voltage for device 2
with differing values of oxide charge. The drain voltage is setat 0.5
volts.

It can be seen from this Figure that the value of the oxide
charge does have an effect on the drain current of the device. With
increasing positive charge the drain current increases. |t should be

noted that this is an n-channel device operating in the enhancement
mode. With no applied gate potential{\r’f{}v} the leakage current that

flows is increased with the increase in positive charge at this
surface. The magnitude of current shift is on the order of microamps.
This small amount of shift would be insignificant in most cases of
design, but when designing low biased, low noise MOSFET's it could
become very significant.
7.4  MOSFET Characterization

To characterize a MOSFET plots of drain current vs. drain
voltage with varying gate voltage, transconductance vs. drain voltage
and input capacitance vs. drain voltage must be given for the device.

This has been done for a device, device 3, with parameters given in



Table 1. The channel length for device 3 is 0.73 um and the drain and
substrate dopings are 102%m= and 7-10'8cm3, respectively. Figure
19 shows the doping profile for device 3. Figure 20 shows
electrostatic potential for the device with drain bias of 2 volts and
gate bias of 1 volt, with the corresponding electron concentraion
shown in figure 21.

Figures 22 and 23 show the |-V characteristics for device 3.
The pinch off voltage of the device is approximately 4.0 volts. There
is transistor action beyond the pinch off voltage although it is not
linear. Figures 25 and 26 are the transconductance and input

capacitance vs. drain voltage.
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CHAPTER 8 - DISCUSSIONS AND CONCLUSIONS

The previous section gave the results of three simulations. The
first two simulations were carried out using the Newton iteration
discussed in Chapter 6. The number of mesh lines used were 35, 30
and 15 in the x, y and z directions, respectively. This number of mesh
lines translates into a matrix size of approximately 15,000 by 15,000
or 15,000 unknowns. This large of a matrix must be solved very
carefully due to the fact that rounding errors become significant. The
Newton iteration worked at very low bias but not at a higher bias. For
this reason the linearization scheme discussed in chapter 6 was used.
The instability that was encountered using Newton's method was not
seen using the linearization technique in conjunction with a strongly
implicit procedure for solving the large matrix.
8.1  The Instability

The Newton underelaxation scheme employed here showed a
relatively poor performance in converging to an accurate solution
under high bias conditions. This was due to the fact that the Jacobian
matrix was not diagonally dominant. A sample unstable convergence

of electrostatic potential is shown in Figure 27. After modifying the
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Jacobian matrix entries, as discussed in section 6.2, the solution
converged more readily.
8.2  Distribution of Potential, Carrier Concentrations and Current
Densities
The electrostatic potentials shown in Figures 4, 12 and 20
clearly illustrate the effect of biasing on the potential distribution.
The shift in the saddle point is due to the doping concentrations in the
substrate and the applied bias. The higher the substrate doping, still
assuming an abrupt drain-substrate junction, the less the potential

distribution will protrude into the substrate region for a given
applied voltage. For device 2 with L = 1.0 um, Ny = 10"7em® and N, =

7-10"%cm3, the applied drain bias of 0.5 volts is almost enough to

cause the MOSFET channel to punch through. The doping concentration
changes the value of drain voltage needed to achieve punch through as
well. For device 1 with a substrate doping of 10'° an applied drain
potential of 0.5 volts would cause punch through. The same device

with the substrate doping of 7-10'%, device 2, does not cause punch
through.

The distribution of electrons in the channel under different



biasing conditions are presented in Figures 5, 13 and 21. Figure 5
corresponds to no inversion, device 1, Figure 13 to weak inversion,
device 2 and Figure 21 to strong inversion device 3. For a device to
have its channel region strongly inverted the applied gate potential
must be high enough to draw the carriers to the oxide interface. For
exact poptential required to bring on strong inversion the device
geometries must be known. For device 3, stong inversion occurs at a
gate potential of approximately 1.0 volt while weak inversion occurs
at 0.5 volts.

The net recombination/generation for devices 1 and 2 are

shown in Figures 9 and 17, respectively. Although the magnitude of

this term changed significantly, the overall effect on the 1,-V

characteristics is not significant, as shown in Figure 22 which should
be compared to Figure 23. The greatest change in these |-V
characteristics is approximately 10 pA. This result agrees with
those reported by others[3],[21] and [28].

The magnitude of the current density is shown in Figures 10
and 18. When determining the drain current only the component of the

current density in the x direction is used. For the discrete case the
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current density in the x direction passes through a plane defined by a
constant x and varying y and z. The area of this plane is multiplied by
the current density flowing through this plane.

With this program different parameters can be changed in order
to find the optimum design. For example, if a high transconductance
is sought while the only varible in the device that is flexible is
channel length, the program can simulate the device parameters with
different channel lengths until the highest transconductance is found.

This allows creativity when designing the device.
8.3 13-V Characteristics

Figure 22 shows the |-V characteristics for device 3. The
pinch off voltage is about 4.0 volts for this device. There is
transistor action beyond the pinch off voltage although it is not very
linear.

The short channel effects of device 3 shown in Figure 22 can be
illustrated by considering the curve for a gate voltage of 3.0 volts.
Beyond the drain voltage of 4.0 volts the device has punched through.
With increasing drain voltage an increase in the drain current occurs.

This effect, which was mentioned earlier, is failure of current
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saturation due to punch through. The drain current of a long channel
MOSFET in the saturation region changes very little with drain
voltage. For this short channel device a drain voltage of 4.5 volts
corresponds to a drain current of approximately 10 mA while ata
drain voltage of 5.5 volts the drain current is 13.5 mA. The
difference in drain voltage of 1.0 volt gives a difference in drain
current of 3.5 mA. This significant change in drain current while the
device is in the saturation region is a very good example of the short
channel effects.

If the gate voltage is increased beyond 3.0 volts the drain
current starts to increase in an almost ohmic fashion. This is due to
the fact that the channel has punched through. Increasing the channel
length will give better characteristics in the saturation region. If
the channel length is increased the applied voltage needed to create
the punch through effect will increase.

To accurately model this short channel behavior a field
dependent mobility and three dimensional simulation must be used.
As the electric field is increased the carrier velocity in the channel

saturates. This effect must be modeled with a field dependent
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mobility. As the source and drain depletion layer widths become
comparable to the channel length the transverse field, controlled by
the gate bias, becomes comparable to the longitudinal field controlled
by the drain bias. To take into account this two dimensional effect

all three dimensions must be included in the simulation.

8.4  Effects of Oxide Charge

The oxide charge affects how the gate potential changes the
channel region in the MOSFET. A positive charge at the oxide
semiconductor interface causes a greater current to flow for a lesser
gate bias. The positive charge at the interface attracts a negative
layer of charge under the interface. This layer of negative charge
thus increases the amount of leakage current when the device is off.

Figure 24 shows how the gate oxide changes the drain current
for device 2. For plotting purposes the drain current presented in this
Figure has been normalized by subtracting 1.132 mA from it. For an
oxide oxide charge of 10'%m™ and a gate voltage of 0.4 volts the
drain current is 1.13224 mA, while for a oxide charge of 10'%m2 the

drain current is 1.13233. This change in drain current is not
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significant although it could be if low biasing conditions are needed.
The |-V characteristics shown in this Figure are not very smooth
although the trend is increasing upward. This nonsmoothness is due
to numerical computation error.
8.5  Transconductance and Capacitance
Figure 25 is a plot of transconductance vs. drain voltage. The

transconductance is a measure of how the drain current changes for a
change in gate voltage. As the drain bias increases the
transconductance of the device increases as shown in Figure 25. The
transconductance at a drain bias of 3.0 volts is 0.4 millimhos while
the transconductance is 4.0 millimhos at a drain bias of 5.0 volts.
This is due to the fact at a drain bias of 5.0 volts the device is in
saturation while at the drain bias of 3.0 volts the device is in the
subthreshold region. This fact agrees well with results obtained for
the pinch off voltage of the device (see Section 8.3).

The input capacitance vs. drain voltage is shown in Figure 26.
This capacitance increase with drain voltage and thus also with drain
current. This increase comes from the increase in drain current.

With more drain current the charge in the channel is greater and thus



the channel capacitance is greater. For example a drain bias of 2.0
volts corresponds to an input capacitance of 30 pF while at a drain

bias of 5.0 volts the capacitance is 150 pF. This is do to the fact that
4.0 volts of drain voltage is indeed the pinch off voitage of the device
and the input capacitance of the device is expected to increase

sharply. The input capacitance is the parallel combination of the

oxide capacitance and the channel capacitance. The input capacitance
behaved similar to the transconductance. If the input capacitance is
the major concern in the device the program can simulate different
designs until the optimum, or desired, design is found.

The transconductance and input capacitance can be used to
determine the maximum operating frequency of a device. This
frequency is simply the transconductance divided by the input
capacitance. For device 3, the maximum operating frequency is 4.2
MHz. This operating frequency is dependent on the input capacitance
which is a function of the channel length. With smaller channel
length the input capacitance decreases and correspondingly the
maximum operating frequency increases. For device 3 with L=0.73 um

the operating frequency of 4.2 MHz can be increased by decreasing the
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channel length. The problem in doing this, as has been discussed
before, is the short channel effects start to become very noticeable.
8.6  Future Work

This thesis is a three dimensional simulation of a short channel
MOSFET's with the etfects of the trapped oxide charge. Future work
that may also be done in this area is a transient simulation of short
channel MOSFET's, carrier heating in the channel region and different

types of doping and fabrication structures.

60



61

TABLE 1

DEVICE 1 DEVICE 2 DEVICE 3
Channel 1.0 um 1.0 um 0.73 um
length
Channel 1.5um 1.5 um 10.0 um
width
Drain and 0.3 um 0.3 um 0.13 um
source
lengths
Junction 0.3 um 0.3 um 0.13 um
depth
Oxide 10'%cm™ 10'%cm™ 10"%cm™
charge
Oxide 260 A 260 A 260 A
thickness
Drain and 10"7em 10"7em3 10%%m3
source doping
Substrate 10"%¢mS 7-10"%¢m3 7-10'%cm™3
doping
Height of 1.5um 1 5pum 0.8 um

device
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Jake Baker

Thesis program

c ______________________________________________________________________________
c
real*8 1
real*8 xdist(60),ydist(60),zdist(60)
real*8 si(35,30,15),n(35,30,15),p(35,30,15)
real*8 mun(35,30,15),mup(35,30,15),doping(35,30,15)
real*8 rg(35,30,15),jtot(35,30,15)
real*B xlambda2
rEﬂ-l*B Ersi{35;30.15]‘.&!‘!’1(3'3;25.3} r'EI'P': 3ﬂF25!3]
C
open{unit=14,file="ipsub.in’,status="0ld")
open(unit=15,file='total.out’,status="0ld’)
C
call ipsub(temp,l,z,dsl,rj,vg,vd,gox,dopds,ssd, h,tox)
write(6,*) ' Input parameters completed’
C
C do 17 vg=1,3
C do 16 vd=0.,5.5,.5
call initguesi(temp,l,2z,dsl,rj,vg,vd,qox,dopds,ssd, h,tox,
wd,ws,wm,ys,yd,vbi,sis)
c write(6,*) ’ Initguesl completed’
C
call mesh(nx,ny,nz,xdist,ydist,zdist,1,z,dsl,rj, h,wd,ws,wm,vbi,sis,
yd,doping,dopds,ssd)
C write(6,*) ' Mesh routine completed’,nx,ny,nz
C
call diffuse(nx,ny,nz,xdist,ydist,zdist,rj,1,dsl, h,ssd,dopds,doping,
n,p,si)
c write(6,*) 'Diffuse completed’
c
call initgues2(nx,ny,nz,xdist,ydist,zdist,rj,dsl,l,sis,wd,ws,wn,
vbi,ssd,dopds,temp,si,n,p,vd,h)
C write(6,*) ’ Initgues2 completed’
c
C do 10 iit=1,3
Cc if(iit.eq.l)go to 18
call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,gox,1,
z,dsl,vg,vd,tox,rg,ssd,mun,mup,doping, jtot)
c write(6,*) ' Boundcond routine completed’
%
[
call scaleit(si,n,p,doping,mun,mup,rg,xlambda2, temp,nx,ny,nz,
xdist,ydist,zdist)
C write(6,*) ' SBcaleit routine completed’
[ 1
call soljacsi(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambda2,
mup,mun,rqg,ersi)
C write(6,*) * Soljacsi routine completed’
C
call unscaleit(si,n,p,doping,mun,mup,rg,xlambda2, temp,nx,ny,nz,xdist,
ydist,zdist)
c write(6,*) ' Unscaleit completed’
C
go to 66
18 continue
call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,1,
z,dsl,vg,vd, tox,rg,ssd,mun,mup,doping, jtot)
c write(6,*) ' Boundcond routine completed’
c
70 call mcbility{mun,mup,dnping,ﬂi,n,p,nx,ny,nz,temp,xdist,ydist,zdist]
c write(6,*) ' Mobility routine completed’



call recgen(si,n,p,nx,ny,nz,temp,xdist,ydist,zdist,rg,doping,mun,
mup, jtot)
write(6,*) ' Recgen routine completed’

AN an
+

call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qgox,1,
+ z,dsl,vg,vd,tox,rg,ssd, mun, mup,doping, jtot)

c write(6,*) ’ Boundcond routine completed’
C
call scaleit(si,n,p,doping,mun,mup,rg,xlambda2, temp,nx,ny,nz,
+ xdist,ydist,zdist)
c write(6,*) ' Scaleit routine completed’
G
call soljacn(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambda2,
+ mup,mun,rg,ern,dopds)
c write(6,*) ' Soljacn routine completed’
L3
call unscaleit(si,n,p,doping,mun,mup,rg,xlambda2,temp,nx,ny,nz,xdist,
+ ydist,zdist)
C write(6,*) ' Unscaleit completed’
G
call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,1,
+ z,dsl,vg,vd,tox,rg,ssd, mun,mup,doping, jtot)
C write(6,*) ' Boundcond routine completed’
C
call mobility(mun,mup,doping,si,n,p,nx,ny,nz,temp,xdist,ydist,zdist)
C write(6,*) ' Mobility routine completed’
[ %
call recgen(si,n,p,nx,ny,nz,temp,xdist,ydist,zdist,rqg,doping,mun,
+ mup,jtot)
e write(6,*) ' Recgen routine completed’
Cc
call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,1,
+ z,dsl,vg,vd,tox,rg,ssd,mun,mup,doping, jtot)
c write(6,*) 'Boundcond completed’
c
call scaleit(si,n,p,doping,mun,mup,rg,xlambda2, temp,nx,ny,nz,
+ xdist,ydist,zdist)
C write(6,*) ' Scaleit routine completed’
c
call soljacp(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambda2,
+ mup,mun,rg,erp,ssd)
c write(6,*) ' Soljacp routine completed’
C
call unscaleit(si,n,p,doping,mun,mup,rg,xlambda2, temp,nx,ny,nz,xdist,
+ ydist,zdist)
e write(6,*) ' Unscaleit completed’
10 continue
c
call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,1,
+ z,dsl,vg,vd,tox,rg,ssd,mun,mup,doping, jtot)
C write(6,*) 'Boundcond completed’
C
current=0.0
c
do 101 iz=2,nz-1
do 102 iy=2,ny-1
current=jtot(25,iy,iz)*(ydist(iy+1l)-ydist(iy)
+ y*(zdist(iz+l)-2dist(iz) )+current
102 continue
101 continue

write(6,*)vg,current,gox
current=abs(current)
write(1l5,#*)vd,current

16 continue
write{1l5,*)



continue
call printc(si,n,p,xdist,ydist,zdist,nx,ny,nz,doping,mun,mup,rg,temp

,jtot)
write(6,*) * Print to file routine completed’
stop
end

T o o s s o . o o e o

subroutine initguesl(temp,l,2z,dsl,rj,vg,vd,qox,dopds,ssd, h,tox,
wd,ws,wn,ys,yd,vbi,sis)

real+*g 1
vbip=(1l.38e-23*temp/1.6e-19)*(log(ssd/1.45el5))
sis=vbip*2.0
vbi=(1l.38e-23*temp/l.6e~19)*(log(dopds/1.45el5))
cont=2.0%11.9%8_.85e-14/(1.6e=19*ssd)
wd=sgrt(cont*(vd+vbi))

ws=sgrt(cont*vbi)

wm=sgrt(cont#*sis)

go to 10

write(6,%*)

write(6,%) ' SIS = ' ,gig,’ cm'
write(6,*) " VBI = ’,vbi,’' cm’
write(6,*) ' CONT =',cont,’ cm’
write(6,*) " WD = ' ,wd,' cm'
write(6,*) " WS = ! ,ws,' cm'
write(6,*}) " WM = ! .wvm,' cm*
write(6,*) ' ¥YD = ’,yd,"’ cm’
write(6,*)

return

end

T N N N S N o e o e

T —

subroutine initgues2(nx,ny,nz,xdist,ydist,zdist,rj,dsl,l,sis,wd,ws,wm,
vbi,ssd,dopds,temp,si,n,p,vd,h)

real*8 xdist(60),ydist(60),zdist(60),1

real*8 si(35,30,15),n(35,30,15),p(35,30,15)

do 10 iz=1,n=z
do 20 iy=1,ny
do 30 ix=1l,nx

if (xdist(ix).le.dsl) then
if (ydist(iy).ge.(h-rj)) then
si(ix,iy,iz)=vbi
else
si(ix,iy,iz)=vbi*exp(-((h-rj-ydist(iy))) /ws)
end if
elseif (xdist(ix).ge.(dsl+l)) then
if (ydist(iy).ge.(h-rj)) then
else
si(ix,iy,iz)=(vbi+vd)*exp(-((h-rj-ydist(iy)))
Awd)
end if
else
if (xdist(ix).le.(dsl)) then
if (ydist(iy).ge.(h-rj)) then
si(ix,iy,iz)=vbi*exp(-(sqgrt{(xdist(ix)-
dsl)**2.0)/ws))



else
si(ix,iy,iz)=vbi*exp(-(sgrt((xdist(ix)-dsl)
+ #%2 0+(h-rj-ydist(iy))**2.0))/ws)
end if
else
if (ydist(iy).ge.(h-rj)) then
si(ix,iy,iz)=(vbi+vd)*exp(-(sqrt((-xdist(ix)

+ +1l+dsl)**2.0)/wd) )
else
si(ix,iy,iz)=(vbi+vd)*exp(-(sgrt((l+dsl-
+ xdist(ix))
+ *%2.0+(h-rj-ydist(iy))**2.0))/wd)
end if
end if
end if
c
30 continue
20 continue
10 continue
write(6,*) "ws= ',ws
write(6,*) '"wd= ' ,wd
write(6,*) ‘'wm= ' ,wm
return
end
C
o e e o o e e e e e e e e e e e e e e e
C subroutine ipsub reads input values from a file
C _____________________________________________________________________________
C
subroutine ipsub(temp,l,z,dsl,rj,vg,vd,qox,dopds,ssd, h,tox)
real*8 1

read(14,10) temp,l,z,dsl,rj,vg,vd,qgox,dopds,ssd, h,tox
10 format(1215el5)

write(6,*) ' Temperature: ', temp

write(6,*) * Channel length: ’,1

write(6,*)
write(6,*)
write(6,*)
write(6,*)
return
end

Height of device: ’,h
Oxide thickness: ',tox
Diffusion process: ',diftype

write(6,*) ' Channel width: ',z
write(6,*) ' Drain and source length: 7 ,dsl
write(6,*) ' Junction depth: *,rj
write(6,*) * Gate voltage: ',vg
write(6,*) ' Drain voltage: *,vd
write(6,*) * Oxide charge: ',gox
write(6,*) ' Drain and source doping: ’',dopds
write(6,*) ' Substrate doping: ’,ssd
r

C subroutine mesh determines the Mesh points necessary for simulation for
C short channel MOSFET's

C ______________________________________________________________________________
8

subroutine mesh(nx,ny,nz,xdist,ydist,zdist,1,z,dsl,rj,h,wd,ws,wn, vhl,

+ sis,yd,doping,dopds,ssd)

real*g 1 xdlst[EU] ydist(60),zdist(60),doping(35,30,15)
G

nx=35

ny=30

nz=15

do 10 iz=1l,nz
zdist(iz)=(z*(iz-1)/(nz-1))
10 continue



20

Aana

35
25
15

do 20 iy=1,ny
ydist(iy)=h*(iy-1)/(ny-1)

continue

do 50 ix=1,nx
xdist(ix)=((2.0*dsl+l)*(ix-1)/(nx-1.0))

continue

return

end

subroutine diffuse(nx,ny,nz,xdist,ydist,zdist,rj,1,dsl,h,ssd,dopds,
doping,n,p,si)

real*8 xdist(60),ydist(60),zdist(60),doping(35,30,15),1

real*8 n(35,30,15),p(35,30,15),81(35,30,15)

calculate the doping values.

+ + +

do 15 iz=1,nz
do 25 iy=1,ny
do 35 ix=1,nx
if((xdist(ix).le.dsl).or.(xdist(ix).ge.
{dsl+l))) then

if(ydist(iy).ge.(h-rj))then
doping(ix,iy,iz)=dopds-ssd

else
hh=-ydist(iy)+h-rj
doping(ix,iy,iz)=dopds*exp((~hh*+*2)/3e-11)-ssd
end if
else

if{ydist(iy).gt.h-rj)then
doping(ix,iy,iz)=dopds*(exp((-({~-dsl+xdist(ix))**2
)/3e-11)+exp((—(dsl+l-xdist(ix))**2
)/3e-11))-ssd

else
doping(ix,iy,iz)=dopds*(exp(-((-dsl+xdist(ix))*=2+

(h=rj~ydist(iy))**2)/3e-11)+exp(-((dsl+
l-xdist(ix))**2+(h-rj-ydist(iy))*+*2)
/3e-11))-88d

end if

end if

continue

continue
continue

do 45 iz=1l,nz
do 55 iy=1,ny
do 65 ix=l,nx
n(ix,iy,iz)=doping(ix,iy,iz) +ssd +le2
plix,iy,iz)= 210el8/n(ix,iy,iz)+le2
if (xdist(ix).gt.dsl.and.xdist(ix).lt.dsl+l.and.ydist(iy).gt.h-rj)then
n(ix,iy,iz)=doping(ix,iy,iz)+le2
plix,iy,iz)=210elB8/n(ix,iy,iz)+1le2
end if
continue
continue
continue



return
end

subroutine printr(si,n,p,xdist,ydist,zdist,nx,ny,nz,doping,mun,

+ mup,rg,temp,jtot)
real*8 si(35,30,15),n(35,30,15),p(35,30,15),doping(35,30,15)
real#*8 mun(35,30,15)
real*8 xdist(60),ydist(60),2dist(60),mup(35,30,15),jtot(35,30,15)}
real*8 rq(35,30,15)

open(unit=1,file="xd.dat’,form="formatted’)
open(unit=2,file="yd.dat’,form='formatted’)
open(unit=3,file="zd.dat’,form="formatted")
open{unit=4,file="xdist.dat’,form='formatted’)
open(unit=8,file="ydist.dat’,form="formatted’)
open(unit=29,file="rg.dat’,form="formatted” )
open{unit=21,file="mun.dat’,form='formatted’)
open{unit=22,file="mup.dat’,form='formatted’)
open(unit=23,file='dop.dat’,form='formatted’)
open(unit=28,file="jtot.dat’,form="formatted’)

do 30 i=1,nx
write(4,20) xdist(i)
30 continue
do 40 i=1,ny
write(8,10) ydist(i)
40 continue
write(8,*)
do 50 j=1,ny
do-60 i=1,nx-1
write(2,10) logl0(p(i,j,2)
write(1,10)logl0(n(i,§,2))
write(29,10)log9l0(abs(rg(i
write(3,10) si(i,§,2)
write(21,10) mun(i,j,2)
write(22,10) mup(i,j,2)
write(23,10) loglO(abs(doping{i,j,2)))
write(28,10) jtot(i,j.2)
60 continue
write(2,99) logl0(p(nx,j,2))
write(1l,99)1logl0(n(nx,j,2))
write(3,99) si(nx,j,2)
write(29,99)1logl0(abs(rgi(nx,j,2)/1el8+1))
write(21,99) mun(nx,j.2)
write(22,99) mup(nx,j,2}
write(23,99) logl0(abs(doping(nx,j,2)))
write(28,99) jtot(nx,j,2)

)
fJs2)/1el8+1))

50 continue
20 format(e20.8)
99 format(e20.8)
10 format(e20.8,5)
return
end
@]
C _____________________________________________________________________________
C subroutine mobility
l: ____________________________________________________________________________
C

subroutine mobility(mun,mup,doping,si,n,p,nx,ny,nz,temp,xdist,
+ ydist,zdist)
real*8 mun(35,30,15) ,mup(35,30,15) ,doping(35,30,15)



real*8 si{35,30,15),n{35,30,15),p(35,30,15)
real*8 xdist(60),ydist(60),=zdist(60),ex,ey,ez,e

L5
do 10 iz=2,nz-1
do 20 iy=2,ny-1
do 30 ix=2,nx-1
c
€C This part of the program predicts acoustic deformation potential lattice
C scattering. This particular model has been given by Sah et al.
c
¥xmunl=1,0/((1.0/(4185%(temp/300.0)#*%(-1.5)))+(1.0/{2153*
- {temp/300.0)**(-3.13))))
cC
C The next part of the program predicts ionized impurity scattering as well as
C lattice scattering.
c
xmunli=xmunl/sqrt(l.0+abs(doping(ix,iy,iz)) /((3.0el6)+
+ abs{doping(ix,iy,iz))/350.0))
C
C This part of the program takes the gradient of the electric field.
c
ex=(sif{ix+l,iy,iz)-si(ix,iy,iz))(xdist({ix+1)-xdist(ix))
ey=(si(ix,iy+l,iz)-si(ix,iy,iz))/(ydist(iy+1l)-ydist(iy))
ez=(si(ix,iy,iz+1)-si(ix,iy,iz))/{zdist(iz+1l)-zdist(iz))
e=sgrt{ex**liey**2iozt*l)
c
C This part takes the consideration of the carrier heating mobility.
=
mun{ix,iy,iz)=xmunli/sgrt(l.0+abs(doping(ix,iy,iz))/(3elé6+
+ abs(doping(ix,iy,iz))/350)+(e/3.5e3)**2/(e/3.5e3+
+ B.8)+(e/7.4e3)*%2)
C
C The next part of the program does the same as the proceeding except
C that holes are now considered.
C
xmupl=1.0/((1.0/(2502*(temp/300.0)**(-1.5}))+(1.0/(591+*
+ (temp/300.0)**(-3.25))))
xmupli=xmupl /sqrt(l.0+abs(doping(ix,iyv,iz))/((del6)+
+ abs(doping(ix,iy,iz))//81))
mup(ix,iy,iz)=xmupli /sqrt(l. D+abs:dop1ng{1x iy,iz) )./ (4elb+
+ abs{dnpingtix,iy,iz}}/ﬂl}+{efﬁ.leS}**Z/{e/ﬁ.lea+1.6}+
+ (e/2.5ed)*%2)
3o continue
20 continue
10 continue
return
end
c
e e e e o e e e T e o o e e s s
c subroutine recgen
e e e e e e e e e e e e e e e e e e e e e e e e e e
C
subroutine recgen(si,n,p,nx,ny,nz,temp,xdist,ydist,zdist,rqg,doping,
+ mun,mup, jtot)
real*8 doping(35,30,15),mun(35,30,15),mup(35,30,15)
real*B xdist(60),ydist(60),zdist(60),p(35,30,15),n(35,30,15)
real*8 si(35,30,15),jtot(35,30,15)
real*8 rg(35,30,15) ,xnx,yny,2znz, Xpx,ypy,2pz,xjnx,yjny,zjnz,xjn, xjp
real*8 rii,alphan,alphap,xjpx,yipy.2jpz,ee
real*B8 ex,ey,ez
c

do 10 iz=2,nz-1
do 20 iy=2,ny-1
do 30 ix=2,nx-1
taun=(4e-4)/(1.0+abs(doping(ix,iy,iz))/7.1el5)
taup=(4e-5)/(1.0+abs(doping(ix,iy,iz)}/7.1elb)



rsrh=(n({ix,iy,iz)*plix,iy,i2)-210el8)/(taup*(n{ix,iy,iz)+

+ 1.45el5)+(taun*(pl{ix,iy,iz2)+1.45el5)))
rau=(2.B8e-31*n(ix,iy,iz)+9.9e-32*p(ix,iy,.iz))*(p(ix, iy,iz)
+ *n(ix,iy,iz)-210el8)

ex=—(si(ix+l,iy,iz)-si(ix,iy,iz))/(xdist(ix+1}-xdist(ix))
ey=~151{1x,1y+1,1z}—$1{ix iy,iz))/(ydist(iy+1l)-ydist(iy))
ez=—(si(ix,iy,iz+1)-si(ix,iy,iz}))/(zdist(iz+l)-=zdist(iz))
ee={ex**2iey**liog**d)**(0. 5

if(ee.gt.0) then
alphan=(1.0e6)*exp(0.0-(1.67e6/ee))
alphap=(2.0e6)*exp(0.0-(2.0e6/ce))
else
alphan=0.0
alphap=0.0
end if

xnx=(n(ix+l,iy,iz)-n(ix,iy,iz))/(xdist(ix+1l)-xdist(ix
yny=(n(ix,iy+l,iz)-n(ix,iy,iz))/(ydist(iy+1)-ydist(iy
znz=(n(ix,iy,iz+l)-n(ix,iy,iz))/(=zdist(iz+1l)-zdist(iz
xpr=(plix+l,iy,iz)-plix,iy,i2)) (xdist(ix+1l)-xdist(ix
ypy=(plix,iy+l,iz)-p(ix,iy,iz))/(ydist(iy+1)-ydist(iy
zpz=(p(ix,iy,iz+1)-p(ix,iy,iz))/(zdist(iz+1)-zdist(iz
xjnx=n(ix,iy,iz)*mun(ix,iy,iz)*ex+((0.026)*temp/300.0
+ mun(ix,iy,iz)*xnx
yiny=n(ix,iy,iz)*mun(ix,iy,iz)*ey+((0.026)*temp/300.0)*
+ mun(ix,iy,iz)*yny
zinz=n(ix,iy,iz)*mun(ix, iy,iz)*ez+((0.026)*temp/300.0}*
+ mun(ix,iy,iz)*znz

))
) )
))
)}
))
) )
}‘A‘

xjpx=plix,iy,iz)*mup(ix,iy,iz)*ex-(0.026*temp,/300.0)*
+ mup(ix,iy,iz)*xpx

yipy=plix,iy,iz)*mup(ix,iy,iz)*ey-(0.026*%temp,/300.0)*
# mup(ix,iy,iz)*ypy

zjpz=p(ix,iy,iz)*mup(ix,iy,iz)*ez-(0.026*temp/300.0)*
+ mup(ix,iy,iz)*zp=z

xjn=s(xjnx**2+yiny**24+z2jnz**2 ) **0.5

xjp=(xjpx**2+yjpy**2+zjpz**2)**0.5

xjn=xjnx

xjp=xjpx

rii=0.0-(alphan*xjn+alphap*xijp)

jtot(ix,iy,iz)=(xjn+xjpl)*(le-19)

rg(ix,iy,iz)=(rsrh+rau+rii)*1le-7*0.0

30 continue
20 continue
10 continue

return

end

C
subroutine boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,1,
+ z,dsl,vg,vd,tox,rg,ssd, mun,mup,doping,jtot)
real*8 si(35,30,15},n(35,30,15),p(35,30,15) ,mun{35,30,15)
real*8 jtot(35, 3ﬂ 15)
real*8 xdist(60), ydlstiﬁﬂ} zdist(60),mup(35,30,15),doping(35,30, 15}
real*8 rg(35,30,15),1
c

iy=ny
do 10 iz=1,n=z
do 20 ix=1,nx
mun(ix,iy,iz)=mun(ix,iy-1,iz)
mup(ix,iy,iz)=mup(ix,iy-1,iz)



21

22
12

rg(ix,iy,iz)=rg(ix,iy-1,iz)
jtot(ix,iy,iz)=jtot(ix,iy-1,iz)

if(xdist(ix).le.dsl) then
n(ix,iy,iz)=0.5*(sqrt(doping(ix,iy,iz)**2+4.0*210e18)
+doping(ix,iy,iz))
plix,iy,iz)=0.5*(sqrt(doping(ix,iy,iz)**2+4.0*210el8)
~-doping(ix,iy,iz))+1.0e2
si(ix,iy,iz)=(1.38e-23*temp/1.6e-19)*log(doping(ix,iy,iz)/
1.45el5)
elseif(xdist(ix).gt.dsl.and.xdist(ix).le.dsl+l) then
si(ix,iy,iz)=gox*1l.6e-19+vg*(3.9%8.85e-14) /tox+(11.9%8.85e
-14)*si(ix,iy-1,iz)/(ydist(iy)-ydist(iy-1))
sitix,iy,iz}-si{ix,iy,iz]xt[{11.9*8.35&—14}/[ydist[iy]—
ydist(iy-1))+(3.9%8.85e-14) /tox))
vdx=vd*(l-(l+dsl-xdist(ix) )}/ /1)**2.0
n(ix,iy,iz)=(210el8/ssd)*exp((si(ix,iy,iz)-vdx)/.026)+1le2
plix,iy,iz)=ssd*exp(-si(ix,iy,iz)/.026)+1lel
else
n(ix,iy,iz)=0.5*(sgrt(doping(ix,iy,iz)**2+4.0*210el8)+
doping(ix,iy,iz))
plix,iy,iz)=0.5*(sgrt(doping(ix,iy,iz)**2+4.0%210el8)-
doping(ix,iy,iz))+1.0e2

si(ix,iy,iz)=vd+(1.38e-23*temp/1.6e-19)*log(doping(ix,iy,iz)

/1.45el5)
end if

continue
continue

do 11 iz=1,n=z
do 21 ix=l,nx

si(ix,iy,iz)=si(ix,iy+1l,iz)
ni{ix,iy,iz)=n(ix,iy+l,iz)
plix,iy,iz)=p(ix,iy+l,iz)
jtot(ix,iy,iz)=jtot(ix, iy+l,iz)
mun(ix,iy,iz)=mun(ix,iy+1,iz)
mup(ix,iy,iz)=mup(ix,iy+l,iz)
rgl{ix,iy,iz)=rg(ix,iy+l,iz)

continue
continue

do 12 iz=1,n=z
do 22 iy=1l,ny

gi(ix,iy,iz)=gi(ix+l,iy,iz2)
n(ix,iy,iz)=n(ix+l,iy,iz)
plix,iy,iz)=p(ix+l,iy,iz)
mun(ix,iy,iz)=mun(ix+1l,iy,iz)
jtot(ix,iy,iz)=jtot(ix+l,iy,iz)
mup(ix,iy,iz)=mup(ix+l,iy,iz)
rg{ix,iy,iz)=rg(ix+l,iy,iz)

continue
continue

do 13 iz=1,nz
do 23 iy=1,ny

si(ix,iy,iz)=s8i(ix-1,iy,iz)
n(ix,iy,iz)=n(ix-1,iy,iz)
jtot(ix,iy,iz)=jtot(ix-1,iy,iz)
plix,iy,iz)=p(ix-1,iy,iz)
mun(ix,iy,iz)=mun(ix-1,iy,iz)
mup(ix,iy,iz)=mup(ix-1,1iy,iz)
rgf{ix,iy,iz)=rg(ix-1,iy,iz)



23
13

continue
continue

iz=l
do 14 iy=1,ny
do 24 ix=1,nx
si(ix,iy,ig)=si(ix,iy,iz+1)
n{ix,iy,iz)=n(ix,iy,iz+l)
plix,iy,iz)=pl(ix,iy,iz+1)
jtot{ix,iy,ig)=jtot(ix,iy,iz+l)
mun{ix,iy,iz)=mun{ix,iy,iz+1)
mup(ix,iy,iz)=mup(ix,iy,iz+l)
rg(ix,iy,iz)=rgl(ix,iy,iz+l1)
continue
continue

iz=nNg
do 15 iy=1l,ny
do 26 ix=l,nx
si(ix,iy,ig}=si(ix,iy,iz-1)
nlix,iy,iz)=n{ix,iy,iz-1)
plix,iy,iz)=p(ix,iy,iz-1)
jtot(ix,iy,iz)=jtot(ix,iy,iz-1)
mun(ix,iy,iz)=mun{ix,iy,iz-1)
mup(ix,iy,iz)=mup(ix,iy,iz-1)
rg{ix,iy,izg)=rg(ix,iy,iz-1)
continue
continue
return
end

subroutine unscaleit(si,n,p,doping,mun,mup,rqg,xlambda2,temp,nx,ny,nz,
+ xdist,ydist,zdist)

real*8 mun{35,30,15),mup(35,30,15),si(35,30,15) ,doping(35,30,15)

real*8 n(35,30,15),p(35,30,15) ,xdist(60),ydist(60),zdist(60),xlambda2

30
20
10

11

12

real*d rg

rgo=36.0*le
sio=temp*(1
mvo=36.0/581

do 10 iz=1,
do 20 iy
do

con
continue
continue
do 11 ix=1,
xdist(ix)=x
continue
do 12 iy=1,
ydist(iy)=y
continue
de 13 iz=1,
zdist(iz)==z

(35,30,15) ,mvo

20/((4.0e-3)**2)
.38e-23)/1.6e-19
o

nz

=1,ny

30 ix=1,nx
mun{ix,iy,iz)=mun{ix,iy,iz)*mvo
mup(ix,iy,iz)=mupl(ix,iy,iz)*mvo
si{ix,iy,ig)=si({ix,iy,iz)*sio
n(ix,iy,iz)=n(ix,iy,iz)*1.0e20
plix,iy,iz)=plix,iy,iz)*1l.0e20

doping(ix,iy,iz)=doping(ix,iy,iz)*1.0e20

rgl(ix,iy,iz)=rglix,iy,iz)*rgo
tinue

nx
dist(ix)*4.0e-3

ny
dist(iy)*4.0e-3

nz
dist(iz)*4.0e-3



13 continue

return
end
< . I | S
E subroutine scaleit scales the arrays.
c ___________________________________________________________________________
c
subroutine scaleit(si,n,p,doping,mun,mup,rg,xlambda2,temp,nx,ny,nz,
+ xdist,ydist,zdist)
real*8 si(35,30,15),n(35,30,15),p(35,30,15),doping(35,30,15)
real*8 mun(35,30,15),mup(35,30,15) ,mvo
real*8 xdist(60),ydist(60),zdist(60)
real*8 rg(35,30,15),xlambda2
c
rgo=36.0*1.0e20/((4.0e-3)*%2)
sio=temp*(1.38e-23)/1.6e-19
mvo=36.0/si10
c
do 10 iz=1,n=
do 20 iy=1l,ny
do 30 ix=1,nx
mun(ix,iy,iz)=muni{ix,iy,iz)/mvo
mup(ix,iy,iz)=mup(ix,iy,iz)/mvo
si(ix,iy,iz)=si(ix,iy,iz}/si0
n{ix,iy,iz)=n(ix,iy,i1z)/1.0e2(
plix,iy,iz)=p(ix,iy,iz)/1.0e20
doping(ix,iy,iz)=doping(ix,iy,iz)/1.0e20
rg{ix,iy,iz)=rg(ix,iy,iz)/rgo
30 continue
20 continue
10 continue

xlambdaZ=(sio*11.9+8 .8B5e=14)/(((4.0e=3)**2)*]1 . 6e-19*1,0e20)
do 11 ix=1l,nx
xdist(ix)=xdist({ix) 4.0e-3
2§ continue
do 12 iy=1,ny
ydist(iy)=ydist(iy)/4.0e-3
12 continue
do 13 iz=1l,nz
zdist({iz)=zdist(iz) /4.0e-3

13 continue

return

end
c
C ______________________________________________________________________________
C function B returns the value of b.
C ______________________________________________________________________________
cC

real*B function bix)
C

if (x.eqg.0}) then

b=1
else
b=xz/lexp(x)-1.0]}

end if

return

end
%
e e e e e e e e e e e e e e e e e e e e e e e  ———————————————
C function FlA returns the value of a of function F1
C ______________________________________________________________________________
C

real*8 function fla(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real#*8 xdist(60),ydist(60),2zdist(60),xlambda2



fla=xlambda2*(ydist(iy+l)-ydist(iy-1))*(=zdist(iz+l)-2dist(iz-1))
+ Al4.0*(xdist(ix)-=xdist(ix-1)})

return

end

real*8 function flb{xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*§8 xdist(60),ydist(60),zdist(60),xlambda2

flb=xlambda2*(xdist(ix+1l)-xdist(ix-1})*({zdist(iz+1l)-2dist(iz-1))/
+ (4.0*%(ydist(iy)-ydist(iy-1)))

return

end

real*8 function flc(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*8 xdist(60),ydist(60),zdist(60),xlambda2

fle=xlambdaZ*(xdist(ix+1l)-xdist(ix-1))*(ydist(iy+l)-ydist(iy-1))/
+ (4.0%{zdist(iz)-zdist{iz-1)})

return
end

real*8 function fld(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*§ xdist(60),ydist(60),2dist{60),xlambda2

fld=—xlambda2*(((ydist(iy+l)-ydist(iy-1))*(zdist(iz+]l)-zdist(iz-1))*

+ (1.0/(xdist(ix+]l)-xdist(ix))+1.0/(xdist(ix)-xdist(ix-1)))/4.0)
+ +(xdist(ix+1)-xdist(ix-1))*(zdist{iz+l)-=zdist(iz-1))*(1.0/
+ (ydist(iy+1l)-ydist(iy))+1.0/(ydist(iy)-ydist(iy-1)))/4.0+
+ (xdist({ix+1l)-xdist(ix-1))*(ydist(iy+l)-ydist(iy-1))*(1.0/
+ {zdist(iz+l)-zdist({iz))+1.0/(zdist(iz)-zdist(iz-1)))/4.0)
return
end

real*8 function fle(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*B xdist(60),ydist(60),2dist(60),xlambda2

fle=xlambda2*(ydist(iy+1l)-ydist(iy-1})*(zdist(iz+1l)-=zdist(iz-1))/
+ (4.0*%(xdist(ix+1l)-xdist(ix)))

return

end

——— e s S o e o . e e e e

real*8 function flf(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*8 xdist(60),ydist(60),zdist(60),xlambda2

flf=xlambdal2*(xdist(ix+l)-xdist(ix-1))*(zdist(iz+1)-zdist(iz-1))/
+ (4.0*%(ydist(iy+1l)-ydist(iy)))



return

end
4
o e i o i o e e o e
C function flg returns the value of g of function Fl.
.C _____________________________________________________________________________
C
real*8 function flg(xdist,ydist,zdist,xlambda2,ix,iy,iz)
real*8 xdist(60),ydist(60),=zdist(60),xlambdal
E
flg=xlambda2+*(xdist(ix+1l)-xdist(ix-1))*(ydist(iy+l)-ydist(iy-1))/
+ {4.0%(zdist(iz+1l)-zdist(iz)})
return
end
c
C _____________________________________________________________________________
C function f2a returns the value of a of function F2. It calls function b.
C —————————————————————————————————————————————————————————————————————————————
C
real*8 function f2a(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*B xdist(60),ydist(60),zdist(60)
real#«8 si(35,30,15),n(35,30,15),p(35,30,15),mun({35,30,15),b
C
f2a=((mun(ix-1l,iy,iz)+mun(ix,iy,iz))/2.0)*
+ b(si(ix-1,iy,iz)-si(ix,iy,iz))*(ydist(iy+1l)-ydist(iy-1))*
+ (zdist(iz+1l)-zdist(iz-1))/(4.0*(xdist{ix)-xdist(ix-1)))}
return -
end
[
e e e e e e e e e e e —————
¢ function f2b returns the value of b of function F2. It calls function b.
e e e e e e e e e e e e e e e e e
e
real*8 function f2b(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*8 xdist(60),ydist(60),zdist(60)
real*8 si(35,30,15),n(35,30,15),p{35,30,15) ,mun(35,30,15),b
C
f2b=((mun(ix,iy-1,iz)+mun(ix,iy,iz))/2.0)+*
+ b{si(ix,iy-1,iz)-si(ix,iy,iz))*(xdist(ix+l)-xdist(ix-1))*
+ {zdist(iz+l)—-zdist{iz-1))/(4.0*(ydist({iy)-ydist(iy-1}})
return
end
c
e e e o e b S e e i A i S e s

Cc
real*8 function f2c(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*8 xdist(60),ydist(60),2dist(60)
real*8 si(35,30,15),n(35,30,15),p(35,30,15),mun(35,30,15),b
C
f2c=((mun(ix,iy,iz-1)+mun(ix,iy,iz))/2.0)*
+ bi{si(ix,iy,iz-1)-si(ix,iy,iz))*(xdist(ix+1l)-xdist(ix-1))*
+ (ydist(iy+l)-ydist(iy-1))/(4.0*(zdist(iz)-2dist(iz-1)))
return
end
C ———————————————————————————————————————————————————————————————————————— o S—
¢ function f£2d returns the value of d of function F2. It calls function b.
e e e e e ————
C

real*8 function f2d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun,doping)
real*8 =xdist(60),ydist(60),zdist(60),b

real*s si(35,30,15),n(35,30,15),p(35,30,15},mun(35,30,15)

real*8 doping(35,30,15)



pl=((mun(ix+l,iy,iz)+mun(ix,iy,iz))/2.0)%*
+ b(si(ix,iy,iz)-si(ix+1,iy,iz))*(ydist(iy+1l)-ydist({iy-1))*
+ (zdist(iz+l)-zdist(iz-1)}/(4.0*{xdist(ix+1)-xdist(ix)))

p2=((mun(ix,iy+l,iz)+mun(ix,iy,iz))/2.0)*
+ bi{si(ix,iy,iz)-si(ix,iy+l,iz))*{xdist{ix+1l)-xdist(ix=-1))*
+ ({zdist(iz+1)-=2dist(iz-1))/(4.0*({ydist(iy+l)-ydistliy)))

p3=(({mun{ix,iy,iz+l)+mun(ix,iy,iz))/2.0)*
+ b(si(ix,iy,iz)-si(ix,iy,iz+l))*(xdist(ix+1l)-xdist(ix-1))*
+ (ydist(iy+1l)-ydist({iy-1))/(4.0*(zdist(iz+1)-2zdist(iz)))

pd=( (mun{ix-1,iy,iz)+mun(ix,iy,iz))/2.0)*
+ b(si(ix,iy,iz)-si(ix-1,iy,iz))*(ydist(iy+1l)-ydist(iy-1)})*
+ {zdist(iz+l)-zdist(iz-1))/(4.0*(xdist(ix)-xdist(ix-1)))

pSi=((mun(ix,iy-l,iz)+mun(ix,iy,.iz))/2.0)*
3 b(silix,iy,iz)-silix,iy-1,iz))*(xdist(ix+1}-xdist(ix-1))*
+ (zdist(iz+l)-zdist(iz-1))/(4.0*(ydist(iy)-ydist(iy-1)))

pb=((mun(ix,iy,iz-1)+mun(ix,iy,iz))/2.0)*
+ b(si(ix,iy,iz)-si(ix,iy,iz-1))*(xdist(ix+1)—-xdist(ix-1))*
- (ydist{iy+1)-ydist(iy-1))/(4.0*(=zdist(iz)-2dist(iz-1)))

f2d=—(pl+p2+p3+pd+p5+p6)

return
end

real*8 function f2e(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*8 xdist(60),ydist(60),zdist(60),b
real*8 si(35,30,15),n(35,30,15),p(35,30,15) ,mun(35,30,15)

f2e=((mun(ix+l,iy,iz)+mun(ix,iy,iz)}/2.0)*
+ b(si(ix+l,iy,iz)-si(ix,iy,iz))*(ydist(iy+1l)-ydist(iy-1))*
+ (zdist(iz+l)-zdist(iz-1))/(4.0%(xdist(ix+1)}-xdist(ix)))
return
end

real*8 function f2f(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*8 xdist(60),ydist(60),2dist(60),b
real*8 si(35,30,15),n(35,30,15),p(35,30,15),mun(35,30,15)

f2f=((mun(ix,iy+l,iz)4+mun(ix,iy,iz))/2.0)+*
+ b(si(ix,iy+1l,iz)-si(ix,iy,iz))*(xdist(ix+]l)-xdist(ix-1))*
+ (zdist(iz+l)-zdist(iz-1))/(4.0*(ydist(iy+1)-ydist(iy)))
return
end

real*8 function f2g(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
real*8 xdist(60),ydist(60),zdist(60).b
real*8 si(35,30,15),n(35,30,15),p(35,30,15),mun(35,30,15)

f2g=((mun(ix,iy,iz+l)+mun(ix,iy,iz))/2.0)#*
+ b(si(ix,iy,iz+l)-si(ix,iy,iz))*(xdist(ix+1)-xdist(ix-1))*



- {ydist(iy+1l)-ydist(iy-1))/(4.0*(zdist(iz+1l)-zdist(iz)))
return
end

S ———————T RS e e S

real*B function f3a(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*8 xdist(60),ydist(60),zdist(60),b
real*8 si(35%,30,15),n(35,30,15),p(35,30,15) ,mup(35,30,15)

fla=((mup(ix-1,iy,iz)+mup(ix,iy,iz))/2.0)*
+ bi{si(ix,iy,iz)-si(ix-1,iy,iz))*(ydist(iy+1l)-ydist(iy-1))*
+ {zdist(iz+l)-2zdist(iz-1))/(4.0*(xdist(ix)-xdist(ix=-1)))
return
end

real*8 function f3b(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*B xdist(60),ydist(60),zdist(60),b
real*8 si(35,30,15),n(35,30,15),p(35,30,15} ,mup(35,30,15)

f3b={(mup(ix,iy-1l,iz)+mup(ix,iy,iz)} /2.0)*

+ b(si(ix,iy,iz)-si(ix,iy-1,iz))*(xdist(ix+l)-xdist({ix-1)})*
+ (zdist(iz+l)—-z2dist(iz-1))/(4.0*(ydist(iy)-ydist(iy-1))}
return
end
function f£3c returns the value of ¢ of function F3. It calls function b.

real*8 function f3c(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*B xdist(60),ydist(60),zdist(60),b
real*8 si(35,30,15),n(35,30,15),p(35,30,15),mup(35,30,15)

flc=((mup(ix,iy,iz-1)+mupl(ix,iy,iz))/2.0)*
- b(si(ix,iy,iz)-si(ix,iy,iz-1))*(xdist(ix+1l)-xdist(ix-1))*
+ (ydist(iy+1l)-ydist(iy-1))/(4.0*({zdist(iz)-=2dist(iz=-1)))
return
end

T T T o o o o o e o o e o o o o o o o T o O T . . . . . e . . o o o e e e o o . . e

real*B8 function f3d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup,doping)
real*B xdist(60),ydist(60),=zdist(60),b

real*8 si(35,30,15),n(35,30,15),p(35,30,15) ,mup({35,30,15}

real*8 doping(35,30,15)

pl=((mup(ix+l,iy,iz)+mupl(ix,iy,iz))/2.0)*
+ b(si(ix+1l,iy,iz)-si(ix,iy,iz))*(ydist(iy+1l)-ydist(iy-1))+*
+ (zdist(iz+l)-z2dist(iz-1))/(4.0%(xdist(ix+1l}-xdist{ix))}

p2=({mup(ix,iy+l,iz)+mupl(ix,iy,iz))/2.0)*
+ b(si{ix,iy+l,iz)-si(ix,iy,iz))*(xdist(ix+]l)-xdist(ix-1))+*
+ (zdist(iz+l)-2zdist(iz-1))/(4.0*(ydist(iy+]1)-ydist(iy)))

p3={(mup{ix,iy,iz+l)+mup(ix,iy,iz))/2.0)*
+ blsi(ix,iy,iz+l)-si(ix,iy,iz))*(xdist{ix+1)-xdist(ix-1)}*
- {ydist(iy+1l)-ydist(iy-1))/{4.0*(=zdist(iz+l)-2dist(iz)))



pé=((mup(ix-1l,iy,iz)+muplix,iy,iz))/2.0)*
+ b{si{ix-1,iy,iz)-si(ix,iy,iz))*(ydist({iy+1)-—ydist(iy-1))*
+ (zdist(iz+1)-zdist(iz-1))/{4.0*(xdist(ix)-xdist(ix-1)]))

p5=((mup(ix,iy-1,iz)+mup(ix,iy,iz)) 2.0)*
+ b(si{ix,iy-1,iz)-si(ix,iy,iz))*(xdist(ix+1l)-xdist(ix=-1))*
+ (zdist(iz+l)-zdist(iz-1))/(4.0*(ydist(iy)-ydist(iy-1)))

p6=( (mup(ix,iy,iz-1)+mup(ix,iy,iz))/2.0)+*
+ b(si(ix,iy,iz-1)-si(ix,iy,iz))*(xdist(ix+]l)—xdist(ix-1))*
+ (ydist(iy+l)-ydist({iy-1))/(4d.0*{zdist(iz)-zdist(iz-1)))

f3d=-(pl+p2+p3+pd+p5+pb)
return
end

real*8 function f3e(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*8 xdist(60),ydist(60),zdist(60),b
real*8 si(35,30,15),n(35,30,15),p(35,30,15) ,mup(35,30,15)

fle=((mup(ix+1l,iy,iz)+mup(ix,iy,iz))/2.0)*
+ b(silix,iy,iz)-si(ix+1l,iy,iz)})*(ydist(iy+1l)-ydist(iy-1)}*
+ (zdist(iz+l)-zdist(iz-1))/(4.0*%{xdist(ix+1)-xdist(ix)))
return
end

real*B function f3f(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*8 xdist(e0),ydist(60),zdist(60),b
real*B8 si(35,30,15),n(35,30,15),p(35,30,15) ,mup(35,30,15)

fif=((mup(ix,iy+l,iz)+muplix,iy,iz))/2.0)*
b(si(ix,iy,iz)-si(ix,iy+l,iz))*(xdist(ix+1l)-xdist(ix-1))*
(zdist(iz+l)-2dist(iz-1))/(4.0*(ydist(iy+1l)—ydist(iy)))

return

end

+ +

real*8 function f3g(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
real*B8 xdist(60),ydist(60),zdist(60).,b
real*8 si(35,30,15),n(35,30,15),p(35,30,15) ,mup(35,30,15)

fig=((mup(ix,iy,iz+l)+mup(ix,iy,iz))/2.0)*
+ bi(silix,iy,iz)-si(ix,iy,iz+1))*(xdist(ix+1)-xdist(ix-1))*
+ (ydist(iy+1l)-ydist(iy-1))/(4.0*(zdist(iz+l)-2zdist(iz)))
return
end

L L T e e L F e ——

subroutine soljacsi(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambda2,
&+ mup,mun,rg,ersi)



real*8 xdist(60),ydist(60),=zdist(60)

real*8 si(35,30,15),n(35,30,15),p(35,30,158) ,mun(35,30,15) ,mup(35,30,15)
real*8 doping(35,30,15)

real*B rg(35,30,15),ersi(35,30,15)

real*8 aparam,conres,conchn,resids(50),chngs(50|,xlambda

real*d wrkspl(35,30,15),wrksp2(35,30,15),wrksp3(35,30,15)

real*8 wrksp4(35,30,15),a(35,30,15),b(35,30,15),¢(35,30,15)

real*8 d¢3s5,20,15) ,e{35,30,15) ,£(35,30,15),9(35,30,15),q(35,30,15)
real*8 fla,flb,flc,fld,fle,flf, flg

integer itused,ixn,iyn,izn,ifail

nl
n2 ny

n3 nz

nlm = nx

nZm = ny

itmax = 50
itcoun = 0

ndir = 1

ixn=2

iyn=2

izn=2

conres = 1,0e-1
conchn =1.0e-4
ifail = 0
aparam=600.0

nx

open{unit=12,file="jacsi.dat’,form="formatted’)

do 121 iz=1,nz
do 122 iy=1,ny
do 123 ix=1,nx

if(iz.eg.l.0r.iz.eq.nz.or.iyv.eg.l.or.iy.eq.ny.cr.ix.eq.l.or
- .ix.eg.nx)go to 124
a(ix,iy,iz) = flc(xdist,ydist,zdist,xlambda2,ix,iy,iz)
blix,iy,iz) flb(xdist,ydist,zdist,xlambda2,ix,iy,iz)
clix,iy,iz) fla(xdist,ydist,zdist,xlambda2,ix,iy,iz)
dlix,iv.iz) fld(xdist,ydist,zdist,xlambda2,ix,iy,iz)-|
+ n{ix,iy,iz)+p(ix,iy,iz))*le-6
e(ix,iy,iz) fle(xdist,ydist,zdist,xlambda2,ix,iy,iz)
F{ix,iy,iz) fl1f(xdist,ydist,zdist,xlambda2,ix,iy,iz)
g{ix,iy,iz) flg(xdist,ydist,zdist,xlambda2,ix,iy,iz)
glix,iy,iz) ((xdist(ix+1l)-xdist{ix-1))*(ydist(iy+l)-
ydist(iy-1))*(zdist(iz+l)-zdist({iz-1))
/B.0)*(n(ix,iy,iz)-p(ix,iy,iz)-
doping(ix,iy,iz))-(n(ix,iy,iz)+pl
ix,iy,iz))*silix,iyv,iz)*le-6

+ 4+ o+

write{(12,80)a(ix,iy,iz),b(ix,iy,iz),
clix,iy,iz)  dltix,iyv.iz}),
e(ix,iy,iz),f(ix,iy,iz),
glix,iy.iz},q{ix,iy,izl

go to 123

=0 NnOonann
+ + +

24 a(ix,iy,iz)=0.
blix,iy,1z)=0.
cl(ix,iy,iz)=0.
d{ix,iy,iz)=0.
e(ix,iy.iz)=0.
f(ix,iy,iz)=0.
g(ix,iy,iz)=0.
g(ix,iy,iz)=si(ix,iy,iz)

123 continue

L B e Y o [ o o R T



122
121

+ +

continue
continue

call d03ecf(nl,n2,n3,nlm,n2m,a,b,c,d,e,f,9,q9,s5i,aparam,itmax,
itcoun,itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,
wrkspl ,wrksp2,wrksp3,wrkspd,ifail)

write(6,*) itcoun,ifail

format(Be20.4)
format{e20.4)
return

end

subroutine soljacn(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambda2,
mup,mun,rg,ern,dopds)

real*8 xdist(60),ydist(60),zdist(60)

real*B si(35,30,15),n(35,30,15),p(35,30,15) ,mun(35,30,15),mup(35,30,15)

real*8 doping(35,30,15)

real*8 rg(35,30,15) ,ern{35,30,15)

real*8 aparam,conres,conchn,resids(50),chngs({50),xlambda2

real*8 wrkspl(35,30,15),wrksp2(35,30,15),wrksp3(35,30,15)

real*8 wrksp4(35,30,15),a(35,30,15),b(35,30,15),¢c(35,30,15)

real*B8 d(35,30,15),e(35,30,15),£(35,30,15),9(35,30,15) ,q9(35,30,15)

real*8 f2a,f2b,f2c,f2d4,f2e,f2f,f2qg

integer itused,ixn,iyn,izn,ifail

nl = nx

n2 = ny

ni = nz

nlm = nx

n2m = ny
itmax = 50
itcoun = 0
ndir = 1
ixn=22

iyn=13

izn=4

conres = 1,0e-2
conchn =1.0e0
ifail = 0
aparam=600.0

open(unit=14,file='jacn.dat’,form='"formatted’)

do 121 iz=1,n=z
do 122 iy=l,ny
do 123 ix=1l,nx

if(iz.eg.l.or.iz.eq.nz.or.iy.eqg.l.or.iy.eg.ny.or.ix.eq.1.
or.ix.eg.nx)go to 124

a(ix,iy,iz) =f2c(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
b(ix,iy,iz) =f2b(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
c(ix,iy,iz) =f2a(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
d(ix,iy,iz) = f2d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun,
doping)-rg(ix,iy,iz)*1.0
elix,iy,iz) = fle(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
f(ix,iy,iz) = f2f(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
g(ix,iy,iz) = f2g(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun)
glix,iy,iz) = -n{ix,iy,iz)*rg(ix,iy,iz)*1.0+rg(ix,iy,iz)
write(14,80) al{ix,iy,iz) . blix,iy,.iz),c(ix, iy,iz),



ann

124

123
122
121

127
126
125
80
70

d(ix,iy,iz),e(ix,iy,iz), £f(ix,iy,iz2),
glix,iy,iz),qlix,iy,iz)

go to 123
alix,iy,iz)=0.0
glix,iy,iz)=0.
b(ix,iy.,iz)=0.
f(ix,iy,iz)=0.
clix,iy,iz)=0.
elix,iy,iz)=0.
d(ix,iy,iz)=0.
g(ix,iy,iz)=n(ix,iy,iz)
continue
continue
continue

L= e = o o e ]

call d03ecf(nli,n2,n3,nlm,n2m,a,b,c,d,e,f,9,q9,n,aparam,itmax,
itcoun,itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,
wrkspl ,wrksp2,wrksp3,wrkspd,ifail)

write(6,*) itcoun,ifail
do 125 iz=2,nz-1
do 126 iy=2,ny-1
do 127 ix=2,nx-1
if(n(ix,iy,iz).le.le-16)n(ix,iy,iz)=1e-16
if(n(ix,iy,iz).gt.dopds/lelB)n(ix,iy,iz)=dopds/lel8
continue
continue
continue
format(8e20.4)
format({e20.4)
return
end

subroutine soljacp(nx,ny,nz,xdist,ydist,zdist,si,n,p,doping,xlambdaz,
mup,mun,rg,erp,ssd)

real*f8 xdist(60),ydist(60),zdist(60)

real*8 si(35,30,15),n(35,30,15),p(35,30,15) ,mun(35,30,15) ,mup(35,30,15)

real*8 doping(35,30,15)

real*@ rg(35,30,15) ,erp(35,30,15)

real*8 aparam,conres,conchn,resids(50),chngs(50)

real*8 wrkspl(35,30,15),wrksp2(35,30,15),wrksp3(35,30,15),xlambda2

real*8 wrksp4(35,30,15),a(35,30,15),b(35,30,15),¢c(35,30,15)

real*8 d(35,30,15) ,e(35,30,15),£(35,30,15),9(35,30,15),91{35,30.,15)

real*8 f3a,f3b,f3c,£3d,f3e,£3£f, £3g

integer itused,ixn,iyn,izn,ifail

open{unit=15,file="jacp.dat’ ,form="formatted’)
nl = nx

nZ = ny
n3 = nz
nlm = nx
nim = ny
itmax = 50
itcoun = 0
ndir = 1
ixn=6
iyn=5
izn=3



conres = 10,0e-2
conchn =1.0e(
ifail = D
aparam=600.0

C
C
do 121 iz=1,nz
do 122 iy=1l,ny
do 123 ix=l,nx
C
if(iz.eq.l.0r.iz.eqg.nz.or.iv.eg.l.or.iy.eq.ny.or.ix.eq.l.
+ or.ix.eqg.nx)go to 124
C
a(ix,iy,iz) = f3c(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
b{ix,iy,iz) = f3b(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
c{ix,iy,iz) = f3a(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
d(ix,iy,iz) = f£3d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup,
+ doping)-rg(ix,iy,iz)*1.0
e(lix,iy,iz) = f3e(xdist,ydist,zdist,si,n,p,ix,iyv,iz,mup)
f(ix,iy,iz) = £3f(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
glix,iy,iz) = f3g(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup)
g{ix,iy,iz) = -plix,iy,iz)*rg(ix,iy,i2)*1.0+rg(ix,iy,iz)
C
C write(15,80)a({ix,iy,iz),b{ix,iy,iz),clix,iy,iz),d{ix,iy,iz)
C + (elix,iy,iz),£(ix,iy,iz),glix,iy,.iz),q(ix,iy,iz2)
C
go to 123
124 alix,iy,iz)=0
g{ixl i‘_’[‘,iz]-ﬂ
b(ix,iy,iz)=0
flix,iy,iz)=0
Cl[ix; iniz}-U
efix, iY;iZ}-U
d{ix,iy,iz)=0
q{ iXaiYJiZ."ﬂPtix-iy:iZI
123 continue
122 continue
121 continue
&
call d03ecf(nl,n2,n3,nlm,n2m,a,b,c,d,e,£f,9,d,p,aparam,itmax,
+ itcoun,itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,
+ wrkspl ,wrksp2 ,wrksp3,wrkspd,ifail)
c
write(6,*) itcoun,ifail
do 125 iz=2,nz-1
do 126 iy=2,ny-1
do 127 ix=2,nx-1
if(plix,iy,iz).le.0.0)p(ix,iy,iz)=1e-16
if(p(ix,iy,iz).gt.ssd/lel8)p(ix,iy,iz)=ssd/1lel8
127 continue
126 continue
125 continue
80 format(Be20.4)
a0 format(e20.4)

return
end



