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ABSTRACT 

A THREE DIMENSIONAL NUMERICAL SIMULATION OF SHORT CHANNEL 

MOSFETS WITH THE EFFECTS OF GATE OXIDE CHARGE' 

Russel Jacob Baker, M.S.E. 

University of Nevada, Las Vegas, 1988 

A three dimensional model is described for a short channel 

MOSFET with the effect of trapped oxide charge. The model uses the 

finite difference scheme to solve the system of coupled nonlinear 

partial differential equations describing the transport of carriers in a 

semiconductor. A field dependent mobility is used. A MOSFET with an 

oxide charge of 1 010cm-2 is found to have a drain current of 1.13224 

rnA at a gate voltage of 0.4 volts, while an oxide charge of 1011 cm-2 

gives a current of 1.13232 rnA which is not significant under high 

drain bias. The short channel effects such as, failure of current 

saturation due to punch-through, are illustrated with I-V plots. The 

3-dB frequency for a short channel MOSFET Is found to be 4.2 MHZ, 

although the reduction of channel length does increase 3 dB frequency 

the punch through effect puts a limit on channel length . 

• This work was Suppor1l1d by tn. U",111d Stat .. Arrrrt A .. earch OffICe Grant, OAAl 
03-87-GOOO4. 
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CHAPTER 1 • INTRODUCTION 

This thesis deals with the modeling of short channel metal 

oxide semiconductor field effect transistors (MOSFErs) with the 

effects Of gate oxide charge. Present day VLSI presents the problem 

of smaller and smaller device geometries with higher density. The 

"trial and error" method of the past is even less desirable due to the 

increase cost of production and development time. For these reasons 

computer aided design is 95$9nliallo the device engineer. 

1.1 Short Channel MOSFErs 

The short channel effect comes from reducing the channel 

length making it comparable \0 the source and drain depletion layer 

widths. This reduction in turn causes the potential distribution in the 

channel to depend on both the transverse field , controlled by the gate 

voltage, and the longitudinal field, controlled by the drain bias. In 

this situation the transverse field is no longer much greater than the 

longitudinal field. This two dimensional effect results in a 

degradation of the subthreshold behavior, dependence of the threshold 

voltage on channel length and biasing voltages, and failure of current 

saturation due to punch-through. 
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1.2 Trapped Oxide Charge 

The three dimensional model's of MQSFETs developed in the 

past have nol taken the trapped oxide charge into consideration. The 

effect of this trapped oxide charge is very important when dealing 

with short channel MOSFETs due to the small surface area under the 

gale region. Inclusion 01 th is eHeet has made the modeled device 

behave closer to the actual device. 

1.3 Organization of this Thesis 

Chapter 3 of this thesis develops the basic transport equations 

01 carriers in the semiconductor using a semiclassical approach . 

These equations together with the appropriate boundary COnditions, 

also d iSCtlssed in this section, give a complete description 01 carrier 

motion. 

Chapter 4 discusses the physical parameters, carrier mobil ity 

and carrier generation - recombination . The effects of lattice and 

ionized impurity scattering as well as the carrier velocity saturating 

is used in the modeling of mobility. The modeling 01 ca"ier 

generation - recombination takes uncler consideration Shockley - Read 

- Hall, Auger and impact ionization processes. 
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The method of finite differences used to solve the system of 

coupled nonlinear differential equations is discussed in chapler 5. 

The transport equations are transformed Irom continuous to d iscrete 

form. 

The solution of thase discretized semiconductor equations is 

discussed In chapter 6. A Newton iteration is used w ith successive 

under re laxation on a reduced problem set. This method reduces and 

simplifies the large number 01 equations that needs to be solved for 

each iteration of Newton's method . 

The results of three simulations are given in chapter 7. The 

results are d iscussed in chapter 8. For each MOSFET under 

consideration plots of electrostatic potential, electron and hole 

concentrations as well as several other plots of interest to the 

device engineer are given. 

Possible luture work in th is area would be in the simulation 01 

transient behavior. The model that has been develOped could be used, 

with little modification, for this type of simulation. Reference 

words: MOSFET, Short Channel, Numerical Simulation, Jacobian, Oxide 

Trapped Charge, Three-Dimensional, Semiconductor, Solid State. 
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CHAPTER 2· UTERATURE REVIEW 

Semiconductor device modeling started with Gummel[7] who 

modeled a one-dimensional bipolar transistor. The algorithm which is 

called Gummals method has been used extensively throughout 

semiconductor device modeling history. The advantage of this method 

is that it decouples the semiconductor equations. Gummel's method 

proceeds as follows; given an initial guess for the electron and hole 

concentrations Poisson's equation is solved for potential. The 

solution of Poisson's equation is then used to solve the current 

continuity and current density equations for an improved estimate of 

the electron and hole concentrations. The new updated carrier 

concentrations are then used to solve Poisson's equation. This loop 

continues until the difference between successive solutions is below 

the accuracy level desired. Gummel's method has been used in two 

dimensions by Sloiboom[B],[9], Mock[1 0],[111, Heinier[121, Mancl<.[13] 

and others. The main difference between these attempts to solve the 

semiconductor equations is in the choice of varibles and the 

treatment of the carrier continuity equations. Fitchnar at. al. [3] have 

used the exponentials of the quasi Fermi levels as the dependent 
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vo.riablQ; in the current density eQuations while others[34], {351 have 

used the quasi Fermi potentials. A comparison of the two sets is done 

in [36]. Some aUlhors[37]. [38] have used the stream function as a 

variable in the continuity equations. The main assumption that e~ists 

is that the recombination term is zero. 

There has been many 2-D simulations of MOS devices 

[14),[15).{16j,I' 7]. Each ollhese papers focuses on a different aspect 

of MQSFEr s. Power MQSFET's are discussed in [14), a fin ite element 

analysis of a MOSFET in [15), analysis of breakdown phenomena in 

MOSFETs in [16) and modeling of the avalanche effect in MOSFET's in 

[17]. 

Three dimensional simulation has been carried oul by {tB], 

It 9).[20]. It is stated in these papers that the main reason for three­

dimensional simulation is due to short channel effects. Until recent!y 

three dimensional simulations were not considered practical due to 

the large memory requirement and accuracy needed during the 

solution of the large system of algebraic equations, but with 

advances in computer resources these requirements have been met. A 

three-dimensional finite element simulation of various 
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semiconductor devices was discussed in [181, three-dimensional 

simulation 01 VLSI MOSFETs in [19] and a three-dimensional 

simulation of inverse narrow channel effect in (20). 

This thesis is a three-dimensional numerical modeling of a 

short-channel MOSFET including the effect of trapped oxide charge. 

The oxide charge trapped in the bouooary of the semiconductor and 

oxide has been reponed in [33]. and is believed to have a serious 

effect on the capacitance-voltage and current-voltage characterics of 

short channel MOSFETs. This work is an investigation of this effect 

in a numerical modeling enviornment. 
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CI-IAPTER 3· THE BASIC SEMICONDUCTOR EQUATIONS 

In order to simulate any semiconductor device the first step is 

to derive the partial d ifferential equations which describe the 

transport of the carriers in the semiconductor while under the 

influence 01 external f ields. The equations thai w ill be derived are 

valid for all semiconductor deviCes although tl1e only concern is with 

silicon MOSFers. The equations can be used for any type of 

semiconducting male rial w ith the appropriate change of physical 

parameters. Also in this section the boundary conditions which wil l 

be used in the simulation are derived. 

3.1 Equation Formation 

To arrive at the equations which describe transport of carriers 

in the semiconductor device the Boltzmann Transport Equation (BTE) 

is uSed. The 8TE is given by: 

(n-v) + {q-n-Ej/m' + 'i7(n·k·T)/m· • -{n·v j/-c 

n is the carrier concentration, v is the drift velocity. E is the electric 

field. k is BoIt2mann's contant, T is temperatlJre, m' is the effective 

mass of the carrier and 'r is the average collision time. Solving this 

equation wi ll give the carrier concentrations and drift velocities. 
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To usa the aTE the motion 01 carriers has to be treated as 

semlclassical[2]. Semiclassical in this context means the carrier 

motion in a semk:onductor with an externally applied l iald Is 

regarded as a series of acceleration (treated by classical mechanics 

) and scattering ( treated by quantum mechanics) eventsI3]. The 

assumption of a semiclassical nature accounts well lor the transpon 

of carriers in small silicon devices[2] . 

Fichtner at. al.[31 discussed the applicability 01 the aTE lor the 

description of small semiconductor structures and concluded thaI 

silicon devices with active dimensions 01 0.1 fLm or larger can be 

described well with the semiclassical BTE approach. 

The operation 01 a semiconductor device with d imensions 

greater than 0.1 J.lm can therefore be described by solving the BTE. 

However solving the BTE d irectly is impractical, therefore several 

Simplifying assumptions must be made, The first is the quasi static 

local potential approximatlon[4j, This approximation changes the 

problem from space and momentum to space alone, Other 

approximations are; collisions are instantaneous, carrier-carrier 

interaction is neglig ible and the scattering probability is independent 

, 



of external forces, Using these approximations the current density 

equations are derived. 

The basic semiconductor equations needed for modeling short 

channel MOSFErs are Passion's equation, current density equations 

and the current continuity equations. 

3.1.1 Poisson's Equation 

Poisson's equalion Is: 

13·, ) 

and il describes the electrostatic potential in a semiconductor. 

The electric displacement vector 0 is related to the electric 

field vector E by: 

D _ lOsE (3-2) 

where 10, is the semiconductor permittivity. If the permittivity is 

time independent this relation is valid for all materials. In a 

semiconductor with uniform composition (0 . is constant and the 

Poisson equation becomes: 

(3-3) 
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'" is the electrostatic potential and is related to the e lectric fie ld as 

given by: 

(3-4) 

and p the total space charge, assuming complete ionization at room 

temperature Is given by; 

(3-5) 

where 

(3-6) 

No is the number of donor atoms, N ... is the number of acceptor atoms 

and p and n are the hole and electron carrier densities, respectively. 

3.1.2 The Current Density Equations 

The current density equations for electrons and holes, derived 

from the aTE with several assumptions, are given by: 

(3-7) 

(3-8) 

where On and Dp are the electron and hole diffusitivities respective ly. 

and ~n and ~p are the electron and hole mobilities. The diffusion 

10 



coefficients and mobil it ies are dependent on the electric field E, 

which is discussed in chapter 4. 

Assuming a nondegenerate condition, the diffusion coeffic ients 

and mobilities are related by the Einstein relation(5]: 

(3-9) 

(3-10) 

where k is Boltzmanns constant and T is the carrier temperature in 

Kelvin. 

To describe carrier densities the Boltzmann approximation wi ll 

be used. This approximation is valid lor nondegenerate materials and 

is g iven by: 

n • nj exp[q( <to - ¢>F)I kl1 

P - " j exp[q( ¢>F - olo )/ kT] 

(3-'1) 

(3-12) 

where " I is the intrinsic carrier density and ¢IF is the Fermi potential 

under equilibrium conditions. 

Under non-equilibrium conditions Fermi potential is replaced 

by ¢lFn and ¢>Fp which are the quasi Fermi potentials for electrons and 

holes respectively. Equations (3·11) and (3·12) then become: 
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(3-13) 

(3-14) 

The product of (3-13) and (3-14), nand p. is 

(3-15) 

This equation shows that the d ifference in the quasi Fermi 

level indicates how the pn product varies from its equilibrium value 

3.' .3 The Current Continuity Equations 

The current continuity equations are given by: 

\l·Jn-q~ * q·A( <lI,n,p) 

" 
'V.Jp+q~ · -q·A( ,,",n,p) 

01 

(3-16) 

(3-17) 

R( w,n.p) is the recombination and generation difference. This term 

takes into account different phenomena such as thermal generation , 

generation due to Impact ionization and recombination due to traps. 

Using equations (3-3), (3·7), (3·S), (3-16) and (3·17) the 

currentllaw and potential within a device can be described. This 
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simulation will be steady state, although it could be adapted to a 

transient simulation, so thai all derivatives with respect to time are 

set to zero. Substituting (3-7) and (3-8) into (3-16) and (3·17) and 

using (3-B) the following equations are realized 

(3-18) 

(3-19) 

and the Poisson equation is 

(3·20) 

Equations (3-18), (3-19) and (3-20), are a system of coupled 

nonlinear partial differential equations in terms of n,p, and $ , with 

the appropriate boundary conditions this system describes the 

behavior of short channel MOSFETs. 

3.2 Boundary Conditions 

The set of equations given by (3-18), (3-19) and (3-20) subject 

to the following boundary conditions are solved. 

3.2.1 Source and Drain Contacts 

The source and drain contacts are assumed to be ohmic 

contacts. In most simulation programs these contacts are assumed to 



be at thermal equil ibrium with a vanishing space charge region. This 

implies: 

n-p-nI
2 .O 

n-p-C-O 

(3-21 ) 

13-22) 

These two equations can be put into the form of a DiriChlet 

boundary condition for the electrons and holes, as given by (3-23) and 

(3-24). 

n .. [J(C2 .;. 4_nI2) ... C]12 

p .. [J(C" + 4_n;2). C]12 

The boundary condition lor '" is given by 

(3-23) 

(3-24) 

(3-25) 

where w. is the applied voltage at the contact and "'bO is the buill in 

voltage al the contact. w. is 0 V lor source contact and 110 , is the drain 

voltage at the drain contact. The built In voltage is given by 

olIbj _(kT/q) . In(Nd",) 13-26) 

3.2.2 Gale Contact and Iterface Trapped Charge 

AI this boundary there Is an oxide-semiconductor interface. At 
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this interlace fixed charges exist. These are the interlace charges 

and the fixed oxide charges. 

The interface charges are due to Si·Si02 interface properties 

and are dependent on the chemical composition of this interlace. The 

value of the interface trapped charge is on the order of 1010cm-2[6]. 

The fixed oxide charge is located within approximately 30 

Angstrom of the interface and is treated as jf it were altha 

interface[33]. This charge is fixed and cannot be charged or 

discharged over a w ide variation of surface potential. The value of 

the fixed oxide charge is on the order of t010cm"2[6]. 

AI this oxide-semiconductor interface Gauss's law in 

differentiallorm must be obeyed or: 

€ um i1...J.ll" €in.~ I · Qjnl 
an an 

Nm .. 

(3-27) 

€ .. m and €ina aTe the semiconductor and insulator perminivities 

respectively and n is a vector norma! to the surface. Q
in1 

is the 

trapped interface charge at the semiconductor · insulator interface 



which is assumed to be the sum of the interface charge and fixed 

charge(2·1010 cm·:?). Gauss's law states that the electric 

flux(displacement vector) passing through any closed surface is equal 

to the total charge enclosed by that surface. From Gauss's law the 

boundary condition at the gate for electrostatic potential, 0.1;, can be 

determined. The boundary conditions for the electron and hole 

densities are given by[6]: 

n - npo' exp[q (0.1; - <1> 0) I kT] 

P • Ppo' exp[-q w I kT] 

(3-28) 

(3-29) 

where npo and Ppo are the equilibrium values of electron and hole 

concentrations respectively and Wo is the potential due to the drain 

bias. 

3.2.3 Artificial Boundaries 

Artificial boundaries are imaginery boundaries which are used 

to isolate the simulation domain, refer to figure 1. The artificial 

boundaries are chosen such that the device is setfcontained which is 

equivalent to assuming that the current density normal to the surface 



is zero. In other words, at these boundaries the following hold: 

'"" - 0 on 

lln - 0 
on 

lln - 0 
on 

(3-30a) 

(3-30b) 

(3·30c) 

where n is the vector normal to the boundary. It is assumed that 

there is no variation of W. n, or p from the chosen boundary to the 

edge oltha device. 
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CHAPTER 4· THE PHYSICAL PARAMETERS 

The system of nonlinear partial differential equations 

discussed in chapter 3 must be solved in order to simulate the 

behavior of the device. The purpose of this chapter is to elaborate on 

the physical parameters of these equations; the carrier mobility and 

the recombination-generation terms. Ally simulation of a device 

relies heavily on the available models for Ihese physical parameters 

and the accuracy of these models. 

4.1 Carrier Mobility 

Mobility is defined as the velocity of a carrier divided by the 

electric fiekl applied to that carrier. There are many different types 

01 scattering processes, lattice scattering. ioionized impurity 

scattering and saturation 01 drift velocity with high electric field, 

which contribute to the overall mobility. Mobilities are described in 

terms of a relaxation time. The relaxation time is a measure of the 

rate of return to the state 01 equilibrium from a disturbed state. The 

mobil ities from each process add inversely to give the overall 

mobility. 

One dominant scattering mechanism is interaction 01 carriers 

,. 



with the thermally generated phonons which are vibrations of the 

atoms in the crystal. These thermally generated vibrations are 

dependent on temperature. A mOdel given by Sah at at is claimed to 

give accurate values 01 mobility in silicon in the temperature range 

of 4.2 to 600 degrees KSlvin{22J . as given by equations (4_ t) and 

(4-2). 

}In l _ 1 /( " (4195·(T/300rl .~+ 1I(2153"(T1300)-3·13» 

(4-1) 

lip l _ 1/(1/(2502"(TI300)"1.5)+ 1 f{591 "(Tf300r3.25)) 

(4-2) 

The symbols lin l and IIp L donote mobilty due to lattice scattering for 

electrons and holes respectivley. It is stated in [221 thai the 

additional effort for more elaborate formulae based on complicated 

theoretical models are not justif ied. The superscript L denotes 

lattice scattering. 

The next scattering mechanism that w ill be used in the model 

of carrier mobility is the ionized impurity scattering . There has been 

a few models published for th is type of scattering[23I. (24]. These 

models are not independent from the lattice scattering . therefore a 
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model that takes into account both of these scattering mechanisms 

must be used. One such model has been proposed by Scharletter and 

Gummel(25). This model predicts a combined mobility due to latt ice 

vibrations and ionized impurities as given by: 

(4-3) 

This model g ives an accurate account of the carrier mobility 

taking into account the lanice and impurity scattering mechanisms. 

The final effect that wi ll be considered is the saturation of the 

drift velocity for high electric fiekls. When this occurs the mobility 

wi ll decrease with increasing electric field. The mobility taking into 

account lattice scattering, ionized impurity scattering and high 

electric fields has been approximated by [25] and is given as: 

(4-4) 

The varibles in {4-4} have to be imagined w ith the subscripts n or p. 

For the varibles A,B and F, [25J recommends the following values for 



siHcon at 300 K: 

A
n
_3.S.103V/cm, Bn_7.4.103V/cm, Fn-S.8 (4-5) 

A
p 
.. 6.1.1 03V/cm. 8" .. 2.5·' 04V1cm, F " .. 1.6 

There are two other basic types of scattering mechan isms that 

are not included in this model for mobility, carrier-carrier and 

neutral impurity scattering. These scattering effects are neglible 

compared to the three thai have already been discussed and the 

inclusion of their effects would only increase the complexity of the 

model not the accuracy. In making this statement it shOuld be 

remembered that one of the assumptions that was used to derive 

equations (3-18), (3-19) and (3-30) was thai the carrier-carr ier 

interaction is neglible. 

4.2 Carrier Generation-Recombination 

The importance of carrier generation-recombination phenomena 

is dependent on the particular device under consideration. For a 

bipolar device recombination is very important in determining the 

current gain whereas in a unipolar device it is 01 small importance. 

But il the device will be operating under a h~h field condition this 

term becomes very important. This is due to the generation due to 
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impact ionization and the generation.recombination due to Auger 

phenomena. 

The most dominant recombination mechanism in silicon is an 

indirect process involving a trap center somewhere in the energy 

bandgap. This mechanism is the Shockley-Read-Hall generation -

recombination. There are four partial processes involved{26j: 

1. electron capture: an electron from the conduction band is 

trapped by an unoccupied defect which becomes occupied. 

2. hole capture: an electron from an occupied trap moves to the 

valence band and neutralizes a hole. The trap becomes 

unoccupied. 

3. hole emission: an electron from the valence band is trapped 

by a defect, thus leaving a hole in the valence band and an 

occupied trap. 

4. electron emission: an electron from an occupied trap moves 

to the conduction band. The trap becomes unoccupied. 

The Shockley-Read-Hall generation - recombination rate is 

given by [29J, [30J: 

RSRH• (np - nj
2H "t"p.(n+nl) + 't"n'(P+Pl))·\ (4-6) 
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with 

-r _ 1/17 SRH , , 
-r _ I/(,- SRH 

" " 

(4- 7) 

(4- 8) 

'C P and "C n are the carrier lifetimes and un SRH and up SRH are defined as 

the capture rates[26]. 

The next type of recombination - generation that will be added 

in the simulation is Auger or three particle transistions. The Auger 

partial processes can be listed as follows[26j ; 

1. electron capture: an electron from the conduction band 

moves to the valence band, transmitting the excess energy 

to another electron in the conduction band. In the valence 

band the electron recombines with a hole. 

2. hole capture: an electron from the conduction band moves to 

the valence band transmitting the excess energy to a hole in 

the valence band, which moves away from the valence band 

edge. The electron recombines with a hole. 

3. electron emission: an electron from the valence band moves 

to the conduction band by consuming the energy of a high 

energetic electron in the conduction band and leaving a hole 
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in the valence band. 

4. hole emission: an electron from the valence band moves to 

the conduct ion band by consuming the energy of a high 

energetic hole in the valence band. A hole is lell at the 

valence band edge. 

In any of these transistions three particles are involved. The total 

net generation - recombination rate is given by[31]: 

(4-9) 

ff /U and 0' /U are called the Auger coefficients and have the values: 

(j /,U _ 2.8 .10-31 (4-10a) 

(4-10b) 

The last type of generation that will be used in the model is 

impact ionization. Impact ionization is the most important 

phenomena in junction breakdown . There are two partial processes 

involved[26j: 

1. electron emission: an electron from the valence band moves 

to the conduction band by consuming the energy of a high 

energetic electron in the conduction band and leaving a hole 
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in the valence band. 

2. hole emission: an electron from the valence band moves to 

the conduction band by consuming the energy of a high 

energetic hole in the valence band. A hole is left at the 

valence band edge. 

Impact ionization generation can be expressed as: 

(4-11) 

where Ct' n and "'p are the ionization coeffic ients and I n and J p are the 

current densities. The ionization coefficients are given by: 

(4-12a) 

0: _ 0. int.exp(_E em/E) " , (4-12b) 

(4-12c) 

(4-1 2d) 

Equation (4.11 ) together with (4-1 2) is used for simulation of impact 

ionization. 



CHAPTER 5· THE DISCRETIZATION OF THE SEMICONDUCTOR 

EQUATIONS 

Analytical solutions for the set of d ifferential equations 

described in chapter 4, if nOI impossible, is extremely difficul t to 

obtain. The first step in obtaining the solution of such system of 

equations Is discretization 01 this system. To do so the differential 

equations are approximated by finite differences. This changes the 

system 01 equations from nonlinear coupled partial d ifferential 

equations to a set of discretized, nonlinear coupled equations. The 

nonlinear discretized system is then linearized using Taylor's series 

for the functions describing the discretized equations. This forms 

the basis for Newton iteration scheme. The couplirlg of these 

equations is dealt with in the iteration cycles of the Newton iteration 

scheme which is described in chapter 6. 

In the finite difference scheme the simUlation domain will be 

rectangular with meshlines parallel to the three coordinate axises. 

At each intersection of these meshlines the three equations, (3-18), 

(3-19) and (3-20), is written in discrete lorm. Together all of these 

equations lor each point w in be used to solve iteratively lor the 
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values of olr , nand p. 

5.1 Finite Differences 

In the rectangular domain the number of meshlines in each 

direction wi ll be labeled NX, NY and NZ in the x direction, y d irection 

and z direction respectively with a uniform mesh, refer to Figure 2. 

The discretization will be the classical seven point method which is a 

good compromise between complexity of discretization and the 

accuracy of the result. The d istance XI is assumed to be the distance 

from the orig in to the i rneshline parallel to the y axis. A similiar 

description can be made for Yj and zm" The following abbreviations 

will be used: 

Ui.i,m - U(xi' Yj • zm) 

u;..tl2.j,m - U((X1•1+ xi)/2, YI' zm) 

U1,j+112,m • U(xi' (Yj.l + Yj)/2, z m) 

(5-1 ) 

(5-2) 

(5-3) 

(5-4) 

(5-S) 

(5-6) 
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(5-7) 

This discretization scheme is the simplest with the local error being 

controlled by the mesh spacing. 

5.1.1 Poissons Equation 

Poissons equation Is discretized first. The poisson equation 

can be written explicitly as: 

where ojI xx . >.j.rYV and ojI u are second order partial derivatives in 

the x, y and z directions respectively. The first order partial 

derivatives can be replaced with[28]: 

ojI x I i.i.m ... (tlo 1. 1I2,j,m - <lo j.112,j.m H2I(hj + h i_1)) + 

O(hHU I·· 
'J,m (5-9) 

.'1 1.I,m 

(5-10) 

(5-11) 

The truncation error is controlled by the mesh spacing. 
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Substituting (5-9), (5-10) and (5-1 1) into the Poisson equation Ihe 

following is realized: 

n. , +P1, +C .. • 0 
lJ.m .~m I,I.m 

(5-12) 

neglecting the higher order terms. Replacing Ihe first order partial 

derivatives in (5-12) with: 

(5-13) 

(5-14) 

(5-15) 

the Poisson equation in difference form can then be written as: 
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n" +p. , +C· · .0 '.I, m '.I, m J.j. m 
(5-16) 

Equation (5-16) is the discretized form of Poisson's equation tha! is 

used in the simu lation. 

5.1.2 Current Continuity Equations 

The current continuity equations with the current density 

equations are written as: 

R( <l> .n,p) • 0 (5-17) 

R(<Ir,n,p) _ 0 (5-18) 

Using the approximation for first order partial derivatives given by 

(5-9), (5-'0) and (5-11) the three dimensional current continuity 

equation for electrons can be wrrtten as (5-' 9). 

+ O(h)·JnxU + 



+ O(k).J 'IV + 0, 

+ Q(I)·J,,/.I • R( ",. n. p) .0 (5·19) 

J"". Jny and Jnz are the scaled electron current densities in the x, y 

and z directions respectivley. The current densities In each direction 

may be written in terms of first order derivatives as[28]: 

J _" 'n' ~ ' · 0 ·n' n...." " (5·20) 

(5·21 ) 

(5·22) 

To discretize the continuity equation for electrons a Taylors 

series is used on the current density. This yields the fo llowing: 

15·23) 

(5·24) 



(5-25) 

The higher order terms O(h:!). O(k1 and 0 (12) are ignored and the 

following equality is made on the interval [x i' X;"II: 

).I n 'n'w" - On -n". I n.II. 1I2j.m + (x - Xi . h/ 2l oJn •• j i. ,I2J.m 

n{ )(1' YI' Zm) - " iJ,m 

nr )(1. " YI' zJ - "i+l .J,m 

(5-26) 

(5-27a) 

(S-27b) 

The assumptions used in equation (5-26) are that the partial 

derivative 01 the electrostatic potential between two mesh points is 

constant and the scaled Einstein relation is assumed to hold for the 

scaled carrier dittusitivilies and mobilities. 

Equation (5-26) is a first order differentia l equation w ith two 

boundary conditions(5-27). The solution of (5-26) with boundary 

COnditions given by (5-27) is: 

In. 1 ;"ll2.~m - (On 11.,I2J.m ·S( iii lJ.m - 4< io-l .j.m)-"Lj.m -
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- 1I(1)oi.).", - " 1.1 .), ... ))·J,,/ L.,I2J,m (5-28) 

8(x) is the Bernoulli function[28] which is defined as: 

B{x). x1{exp(x) - 1) (5-29) 

Under the assumtion that "'I.),m only d iffers by O(h) from its nearest 

neighbor the last term in (5-28) is O(h~. Using equations (5-28) and 

(5-19) and ignoring the lasl term in (5-28) the d iscrete form of the 

continuity equation for electrons can be written in the x d irection. 

The d iscret ized continuity equaticn equation in the y and z directions 

are completely analogous. The descretized continuity equation in 

three d imensions is then given by: 

"I., J,m' On I i+'I2J.m· B( '" i., J,m - 1)0 i,J.ml'(\ I + kj)( lm.\ +1,.JIhj + 

" ij+ I,m ·0 n 1,). 1I2.m .S( 1)0 iJ+ 1.101'40 i.j.,J '(h ~ 1 + hl)()",. , + '",11k) + 

"iJ.m.l ·0 n I i.).,....' r.! ·B( WIJ,m.,-1I< iJ.",) · (h~ 1 + hi)(kj.\ +kl)l1m + 

n~ 1 j,m • On I ~ II2J,m '8 ( >lI ~ 1.1m -1/0 ~J.mHkJ_l + kjWm., +Im)lhl., + 

nij.,.m ·0 II I 1.I-112.m . B{ ~ ;'). ' .m -~ ~j.mHh~ , + h)(Im., + I..,)lkj-l + 

n W•rTH . On I iJ,m.112 ·B( ~ iJ,rTH - 40 1j,..,)·{h;'l + h)(~" +k~lIm.l -

nlJ .m ·(O III ;.- II2.j,m .S( 1/0 lJ,m -~ 1. 1 J."') '(kH + kj)(lm., +Imllh; + 
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On L,J+1I2.m,B(1).riJ,m'<li i,I+,.mHhi- ' + h;J{lm. ,+lmlll<.j + 

On I i,I,m. ll2,B{ tlIi,i,m -w I.J.m+l Hhi., + h,)(kj .,+kj)/lm + 

On I ~1 12.i.m .8(W iJ ,m- 1j.r~ 1 .j , mHkj_' + kjH1 m- l +Im)fhl., + 

Dn L,j.II2,m,B( .)Ii.j,m·t!li,j.l,mHhi.' + h)(lm.,+lm1/kj'1 + 

On I i.],m.112 ·B( <Ii i,j.m oW i,j ,m.' ) ·(hl.1 + h iHkj., +kjl/im-l) -

A 1',j ,m(<J; ,n,p)·(hi., + hj)(kj_, + kj)(lm., +lm)/8 

• 0 (5-30) 

Similarly the discreti zed continuity equation for holes can be writ1en 

as; 

PI.',I,m .Dp ll+lI2J,m,B( W',J,m-1j.r 1. 1 J,mHkj., + kJ)(lm.,+lmllhi + 

Pi,j.l,m .Dp Ilj+l l2.m ·B( 1j.rj.~m - Wi.)., ,m)'(h ~ l + hj)(lm., + lm1/kj + 

PLi,m.' ·Dp Ili,m+II2'B( "'I,1m -.vi.j. m. 1Hh~ 1 + hi)(k},+kjl/lm + 

P~ ' J, m·Dp li'lI2J.m·B{ Wi.j. m·Wi' l.j.mHkj., + kj)(lm. ,+lmlfh,. , + 

PI.j-l ,m ·0 p L')' II2,m -S( W l].'" oW Ij.,.",l·(hi., + hiHI""'1 +1",)fKj. 1 + 

Pi.j, ,,,. 1 -0 P L.j,,,,. 112 -B( W ij, ,,, oW IJ."'" 1 Hhi., + hiHkj.1 +kFl""'l -

PIJ, '" ·(0 p 11. 1 12.).'" -S( $ i.1 J,m'W i,j,m) .(kj•1 + kj)(I"'.1 +lm}Ih, + 
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• a (5-31) 

Eauations (5-31) and (5-32) are the discretized form of the 

continuity equations with the current density equations substituted 

5.1.3 Boundary Conditions 

The discretization of the boundary conditions at the source and 

drain is simple because values alone point arB involved only. From 

equations (3-18), (3-19) and (3-20): 

(5-32) 

p .• 'v _ [,J(C .• ," 2+ 4n.2) • C . • ," 1r.;> <,"",m ~ .. "m , ., ... ,m"- (5-33) 

• •• I • • I I,NY,m III I,NY,m a I.NY,m (5-34) 



The mesh line NY is the point where drain, source and gate contacts 

are located. 

At the gate : 

€sem'( WI ,NV,m - <l>i ,NY_l,m)/(YNY - )lNV. ') - €ins·(Vg -<).ri,NY,m)/lins 

(5-35) 

where Vg is the applied gale vOltage and \0& is the oxide thickness, 

and wi,NY,m is the potential under the oxide at the boundary of the 

simulation. 

The artificial boundaries are at i.l, i_NX, i.', m",l, m_NZ. At 

these boudaries <j.r. nand p are equal to there closest neighboring mesh 

point. This is the same as saying the derivative normal to the 

boundary is zero. 

5.1.4 Scaling 

In order to get faster convergence scaling the dependent 

varibles <j.r, n and p is necessary. These dependent varibles are at 

greally differing orders of magnitude. DeMari[27] gave a standard 

way of scaling . This method 01 scaling was d iscussed and compared 

with a "better" method in (28). The distance is scaled w ith the Debye 
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length xo' potential is scaled with kT/q ( ol> o)' the carrier 

concentrations are scaled with the maximum doping concentration Co' 

the diffusion coefficients are scaled with the maximum diffusion 

coefficient in the simulation domain Do' the mobility is scaled with 

the D/w o' and the recombination - generation term is scaled with 

DO·Ca'X02, So now equations (3-23), (3-24), (3-25), the basic 

semiconductor equations scaled, look like: 

where 

A2.\72~ -(n - p - C) _ 0 

\7-(Dn'i7 n - J-inn'iH) - R( tlI ,n,p) - 0 

'i7 ·(Op \7p - llpP'il w) - A( w ,n,p) • 0 

(5·36) 

(5-37) 

(5-381 

(5-39) 

The biggest effect this scating has is on the carrier concentrations 

and doping concentrations. The poisson equation is muitipied with a 

factor approximately 10.1• depending on the device and operating 

conditions while the continuity equations with the current densities 

subStituted in are multiplied with approximately 10-1
1). 
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5.2 Oes;gning a Mesh 

Figure 1 shows the structure of a short channel MOSFET with 

channel length L, width Z and source and drain junction depth of ~. 

The source and substrate bias are connected \0 ground(OV). 

Figure 2 shows a representation of the mesh used in this 

simulation. When designing a mesh for a simulation, the number of 

mesh points should be greater in the regions of the device where 

varibles are changing in a short distance, such as, in the vicinity of 

drain, source and surface region of the channel. The main requirement 

of the mesh spacing is that it gives the desired accuracy lor such 

regions. After using a nonuniform mesh in this simulation it was 

changed to a uniform mesh for reasons of Simplicity. 
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CHAPTER 6 - SOLUTION OF THE DISCRETE SEMICONDUCTOR 

EQUATIONS 

The Poisson and continuity equations for electrons and holes 

have been discrelized. The next step in the simulation is to solve for 

the potential, electron and hole concentrations at each point The 

method of solution is an iterative technique called Newton's method. 

Section 6.1 of this section d iscusses the Newton iteration applied to 

the semiconductor equations . Section 6.2 discusses the numerical 

instabilities. Section 6.3 discusses the initial guess needed for 

quicker convergence of the iteration . 

6.1 Newton's Method 

To explain Newtons method applied to the semiconductor 

equations the notation will be defined first. 

F1(~' n, p) . 0 

F2("Ji, n, p) . 0 

F3(o.Io. n, p) . 0 

(6-' ) 

(6-2) 

(6-3) 

F, denotes the discrete Poisson equation, F 2 and F 3 are the discretized 

continuity equations for electrons and holes, respectiv!ey. 
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Using Taylors theorem and neglecting the higher order terms 

the fe llowing may be wrinen[39]: 

(F, . S olr " F,nSn + F,P6 p)'· '" -F,(.) ' , nr, p~ 

The correction vector for the roth iterative is given by : 

S olt ' .. >lo r. , - w' 

(6-4) 

(6-5) 

(6-6) 

(6-7) 

(6-8) 

(6-9) 

The unknowns fiol>. Sn and 6 p at each point are found and added to 010, n 

and p 10 give the updated solution or in other words, if ", ' is a solution 

then 1j1'. ' Is a better solution il ,1,1*1 .. W' + 6o.j1'. Rearranging terms in 

equations (6-4) thru (6-6) yeilds: 

(6-10) 
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(6-11) 

(6-12) 

or to resubstitute the Taylors series expansion and combine like 

terms on the right hand side of (6-10), (6-11) and (6-12) yields[39]: 

F 1 ~ 81/0,·1 _ -wF 1 (I/o', n'+ 8n', p'+ 8p') (6-1 3) 

(6-14) 

(6-1 5) 

The factor w is the under relaxtion parameter whk:h is between zero 

and one. The term w should be different for each equation[39]. The 

parameter slows the convergence of the overall solution so that the 

equations will not diverge due to a poor initial guess. Since the 

number of equations that is solved is so large rounding errors become 

significant and can effect the updating of the solution. For this 

reason the under relaxation is necessary. In other words, using under 



relaxat ion the updated solution does not change radically at the price 

of slower convergence. This system of equations is solved iteratively 

until the desired accuracy is attained. 

6.2 Numerical Instability and Convergence Problems 

The Newton method in conjunction with under relaxat ion 

d iscussed in the last section wor\c.ed well for low bias conditions, but 

not for higher bias conditions. II the biasing conditions are such that 

the device is punched through convergence w ill be even more difficult 

to obtain. A simple method lor determining if the device is punched 

through is given by Sze{6]. He uses a abrupt junction approximation to 

determine the width of the drain depletion layer. This width is given 

by (6-16). 

(6-16) 

With a shorter channel length a smaller drain voltage can cause punCh 

through. 

Another reason for the poor convergence of Newton's method 

was due to the greatly differing values of the dependent varibles. To 

overcome these problems a linearization scheme of the following was 

used[7],{28]: 
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\12 ol,r· l . w'(n+pH ol<'.' - ol<') - ( n - p + C ) - ° 

Similarily the current continuity equations become: 

\1-J '·'- w -R·(p'·'· p' j· R ... O , 

(6-17) 

(6-'8) 

(6-19) 

When the solution converges, xk. , ... xk, the added term becomes zero . 

This type of scheme was found to work very well for the discretized 

semiconductor equations. The method used to solve the equations 

after this linearization is a strongly implicit procedure. This method 

for the solution of very large sparse matrices was developed by 

Stone[40]. The Numerical Algorithm Group, NAG, routine D03ECF is 

used. This NAG routine uses Stones method. The method of 

linearization disscussed in conjunction with the NAG routine worked 

well at high and low biasing voltages. 

6.3 Initial Guess 

For quicker convergence and usually a requirement for 

convergence at all , an initial guess must be supplied in conjunction 

with Newton's method. The particular model which is used for the 

initial guess of this simulation is given by Yau[32]. The drain 



depelion layer width is determined by abrupt junction approximation 

given by: 

(6-20) 

and Itle source depletion layer width Is given by: 

(6-'6) 

The n doped regions under the drain and source are assumed to be 

equipotential areas so that the electron and hole concentrat ions are 

constant. For finding the initial guess in the drain region equation 

(6·17) is used. 

"' · "'o9Xp{(x\2+y, ~NJo) (6-17) 

w" is the potential al the drain substrate interface, x, and V, are the x 

and y distances from the drain substrate interface. For n and p use 

equation (6-17) with </0
0 

replaced with the electron or hole density at 

the interface. Simiarly in the source region use equation (6-17) w ith 

Ws replacing Wo' This initial guess is used to generate values for the 

mobility and recombination . 
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CHAPTER 7· RESULTS OF SIMULATIONS 

In this chapter the results of three simulations are presented . 

The silicon MOSFETs used in the simulation have been constructed 

from typical devices being fabricated in industry at this time[6J. In 

section 7.1 a MOSFET with no external biasing conditions will be 

modeled. This is fo llowed by IWO simulations with external biasing 

conditions. At the end 01 this chapter a comparison is made betw"een 

a MOSFET with and without oxide charge to demonstrate how this 

charge effects the drain current. Also at the end of this chapter are 

plots of input capacitance vs. drain voltage, transconductance vs. 

drain voltage and drain current vs. drain voltage, which are used to 

investigate the dependency of cutoff frequency of the device on the 

Channel length and doping concentration of the channel. 

7.1 Simulation of Unbiased MOSFET 

The MOSFET that is simulated has the source, gate and drain 

contacts connected to ground, OV. The channel length of device 1 is 

one mictometer, substrate doping 01 1 01Scm·3 and drain and source 

doping 01 1017cm-3. Table 1 lists the parameters for device 1. The 

operating temperature is assumed to be 300 degrees Kelvin. 



Figure 3 shows the log of the doping profile for the device. 

Constant surface diffusion process has been simulated w ithin the 

simulation program. The inclusion of surface diffusion process in the 

simulation helps give more accurate results. 

Figure 4 shows the electrostatic potential distribution for the 

device. The potential distribution consists only of the buill in 

potential with in the device due to the p-n junctions at the source and 

drain contacts. 

Figure 5 shows the concentration of electrons in the device 

with no applied potential. The z axis in the Figure is the logrithrn of 

the electron concentration, The distribution of electrons is only 

affected by the built in potential of the device. Figure 6 shows the 

hole concentration which is also affected by the built in potential. 

Figure 7 and 8 show the electron and hole mobility 

respectively. As was mentioned earHer these mObilities are field 

dependent which takes into account the effects of scattering 

mechanisms such as lattice, impurity scattering and velocity 

saturation due to high electric field. The mobilities become less in 

the region of the source and drain due to the higher doping 
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concentration and electric fields in that region. The mobilit ies in the 

bulk of the device are approximately 1375 cm'V's·l and 465 

cm2V" 5.1 for electrons and holes respectively. 

The net recombination/generation term shown in Figure 9 has 

been transformed using: 

(7-1) 

where r9 is the net recombination/generation term. As would be 

expected the only recombination is in the area of the source and drain 

regions. This small amount of recombination is negligible and had 

very little eHect on the simulation results. Figures 22 and 23 show a 

comparison of I-V characteristics with and without recombination. 

At this point it should be pointed out that the main process of current 

transport in a MOSFET is drift. The diffusion process is usually 

negligible and some simultation programs for MOSFETs don't even 

take it under consideration[38j. 

The final plOI, Figure 10, in this simulation is of the magnitude 

of the current density. In determining the drain current the current 

density parallel to and directly under the gate region is used[3]. 

7.2 Simulation of a Biased MOSFET 
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In the proceeding section an unbiased MOSFET was presented. 

The plots given are 01 interest 10 the device engineer but 01 no 

importance to the applications engineer. The applications engineer is 

interested in how the device operates under certain applied voltages. 

The MOSfET simulated in this section has the same device parameters 

as the previous section with the exception of the substrate doping 

which is 7.1015, refer to Table 1. The applied vOltage al the drain is 

0.5 'lolls and at the gate is 0.2 volts. The doping profile is shown in 

Figure 11 with the same description as was previously given. 

The electrostatic potentia l for device 2 is shown in Figure 12. 

The saddle point between the drain and gale has been shifted towards 

the source. This shift is due to the increase in the drain potential. 

The farce an carriers in the drain region is greater than in the source 

region. This inequality causes the electrons to migrate towards the 

drain. 

The electron concentration lor device 2 is shown in Figure 13. 

The z axis is logarithmic. The channel region has an accumulated 

layer of charge which is approximately one million times smaller 

then the concentration of electrons in the drain and source areas. 
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This layer of electrons is the path by which the drain current flows. 

From this plot it can be concluded that the gate surface is only mildly 

inverted. Figure 14 shows the corresponding concentration of holes 

Figures 15 and 16 show the electron and hole mobilities under biased 

conditions respectively. The carrier mobilities under biased 

conditions, Figures1S and 16, are lower than that of the unbiased 

condition, Figures 6 and 7. This is due to the higher potential 

distribution for device 2. This higher potential increases the 

scattering of carriers and thus lowers the mobil ity. 

The recombination/generation term for device 2 shown in 

figure 17 has the same transformation to the z axis as was given 

earlier. The recombination in this device has one signi ficant point 

which lies in the region of the drain channel region. This plot 

illustrates that the recombination takes place mainly in the drain 

region. This recombination is due to the large potential gradient that 

exists in this area. 

The magnitude of the current density is given in Figure 18. The 

current density in the direction from the source to drain determines 

t\'IC) ~mC)unt C)! dT~in eurtont!3j. 
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7.3 Effects of Gate Oxide Charge 

Figure 24 shows drain current versus gate voltage for device 2 

with differing values of oxide charge. The drain voltage is set at 0.5 

volts. 

II can be seen from this Figure that the value of the oxide 

charge does have an effect on the drain current of the device. With 

increasing positive charge the drain current increases. It should be 

ncted that this is an n-channel device operating in the enhancement 

mode. With no applied gate potential(V g_OV) the leakage current that 

flows is increased w ith the increase in positive charge at this 

surface. The magnitude of current shift is on the order of microamps. 

This small amount of shift would be insignificant in most cases of 

design, but when designing low biased, low noise MOSFETs it could 

become very significant. 

7.4 MOSFET Characterizat ion 

To characterize a MOSFET plots of drain current vs. drain 

voltage with varying gate voltage, transconductance vs. drain voltage 

and input capacitance vs. drain voltage must be given lor the device. 

This has been done lor a device, device 3, with parameters given in 
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Table 1, The channel length for device 3 is 0.73 !-1m and the drain and 

substrate dopings are 1020cm.,3 and 7·1Q16cm-3, respectively. Figu re 

19 shows the doping profile for device 3. Figure 20 shows 

electrostatic potential for the device with drain bias of 2 volts and 

gate bias 01 1 volt, with the corresponding electron concentraion 

shown in figure 21. 

Figures 22 and 23 show the I-V characteristics lor device 3. 

The pinch off voltage 01 the device is approximately 4,0 volts. There 

is transistor action beyond the pinch off voltage although it is not 

linear. Figures 25 and 26 afe the transconductance and input 

capacitance vs. drain voltage. 
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CHAPTER 8 - DISCUSSIONS AND CONCLUSIONS 

The previous section gave the results ollhree simulations. The 

first two simulations were carried out using the Newton iteration 

discussed in Chapter 6. The number of mesh lines used were 35, 30 

and 15 in the x, y and z directions, respectively. This number of mesh 

lines translates into a matrix size of approximately 15,000 by 15,000 

or 15,000 unknowns. This large of a matri x must be solved very 

carefully due to the fact that rounding errors become significant. The 

Newton iteration worked at very low bias but not at a higher bias. For 

th is reason the linearization scheme discussed in chapter 6 was used. 

The instability that was encountered using Newton's method was nOI 

seen using the linearization technique in conjunction with a strongly 

implicit procedure lor solving the large matri)[. 

8.1 The Instability 

The Newton underelaxaUon scheme employed here showed a 

relatively poor performance in converging to an accurate solution 

under high bias conditions. This was due to the fact thai the Jacobian 

matrix was not diagonally dominant. A sample unstable convergence 

of electrostatic potential is shown in Figure 27. After modifying the 
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JaCObian matrix entries, as discussed in section 6.2, the solution 

converged more readily. 

8.2 Distribution of Potential. Carrier Concentrations and Current 

Densities 

The electrostatic potentials shown in Figures 4 , 12 and 20 

clearly illustrate the effect 01 biasing on the potential d istribution. 

The shift in the saddle point is due to the eloping concentrations in the 

substrate and the applied bias. The higher the substrate doping , still 

assuming an abrupt drain-substrate junction, the less the potential 

distribution will protrude into the substrate region for a g iven 

applied voltage. For device 2 w ith L .. 1,0 !-1m, NO " 1017cm-3 and NA .. 

7·101Scm-3, the applied drain bias 01 0.5 volts is almost enough to 

cause the MOSFET channelta punCh through . The doping concentration 

changes the value 01 drain voltage needed to achieve punch through as 

well. For device 1 with a substrate doping of 1015 an applied drain 

potential 01 0.5 volts would cause punch through. The same device 

w ith the substrate doping 01 7.1015, device 2, does not cause punch 

through. 

The distribution of electrons in the channel under different 
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biasing conditions are presented in Figures 5, 13 and 21. Figure 5 

corresponds to no inversion, device 1, Figure 13 to weak inversion, 

device 2 and Figure 21 10 strong inversion device 3. For a device to 

have its channel region strongly inverted the applied gate potential 

must be high enough to draw the carriers to the oxide interface. For 

exact poplenlial required to bring on strong inversion the device 

geometries must be known, For device 3, stong inversion occurs al a 

gate potential of approximately 1,0 volt while weak inversion occurs 

al 0.5 volts, 

The net recombination/generation lor devices 1 and 2 are 

shown in Figures 9 and 17, respectively. Although the magnitude of 

this term changed significantly, the overall effect an the lo-V 0 

Characteristics is not significant, as shown in Figure 22 which should 

be compared to Figure 23. The greatest change in these I-V 

characteristics is appro)(imately to )lA. This result agrees with 

those reported by others[3].[21] and [28]. 

The magnitude of the current density is shown in Figures 10 

and 18. When determining the drain current only the component of the 

current density in the x direction is used. For the discrete case the 
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current density in the x direction passes through a plane defined by a 

constant x and varying y and z. The area of this plane is multiplied by 

the current density flowing through this plane. 

With this program different parameters can be changed in order 

10 find the optimum design. For example, if a high transconductance 

is sought while the only varible in the device thai is lIexible is 

channel length, the program can simulate the device parameters with 

different channellenglhs until the highest transconductance is found. 

This allows creativity when designing the device. 

8.3 lo-Vo Characteristics 

Figure 22 shows the I-V characteristics lor device 3. The 

pinch off voltage is about 4.0 volts for this device. There is 

transistor action beyond the pinch off voltaQ9 although it is not very 

linear. 

The short channel effects of device 3 shown in Figure 22 can be 

illustrated by considering the curve for a gate voltage of 3.0 volts. 

Beyond the drain voltage of 4.0 volts the device has punched through. 

With increasing drain voltage an increase in the drain current occurs. 

This effect, which was mentioned earlier, Is failure of current 
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saturation due to punch through. The drain current of a long channel 

MOSFET in the saturation region changes very little with drain 

voltage. For this short channel device a drain voltage of 4.5 volts 

corresponds to a drain current of approximately 10 rnA while at a 

drain voltage 01 5.5 volts the drain current is 13.5 rnA. The 

difference in drain voltage of 1.0 vol1 gives a difference in drain 

current of 3.5 rnA. This significant change in drain current whi le the 

device is in the saturation region is a very good example 01 the short 

channel effects. 

If the gate voltage is increased beyond 3.0 volts the drain 

current starts \0 increase in an almost ohmic fashion. This is due to 

the fact that the channel has punched through . Increasing the channel 

length will give better characteristics in the saturation region. If 

the channel length is increased the applied voltage needed to create 

the punch through effect will increase. 

To accurately model this shon channel behavior a field 

dependent mobility and three dimensional simulation must be used. 

As the electric field is increased the carrier velocity in the channel 

saturates. This effect must be modeled with a field dependent 
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mobil ity. As the source and drain depletion layer widths become 

comparable to the channellenglh the transverse field. controlled by 

the gate bias, becomes comparable 10 the longitudinalliald controlled 

by the drain bias. To take into account th is two dimensional effect 

all three dimensions must be included in the simulation. 

8.4 Effects of Oxide Charge 

The oxide charge affects how the gate potential changes the 

channel region in the MOSFET. A positive charge at the oxide 

semiconductor interface causes a greater current to flow for a lesser 

gale bias. The positive charge at the interface attracts a negative 

layer of charge under the interface. This layer of negative charge 

thus increases the amount of leakage current when the device is off. 

Figure 24 shows how the gale oxide changes the drain current 

for device 2. For p lotting purposes the drain current presented in this 

Figure has been normalized by subtracting 1.132 rnA from it. For an 

oxide oxide cnarge of 10 10cm·2 and a gate voltage of 0.4 volts the 

drain current is 1.13224 rnA. while for a oxide charge of 1 010cm·2 the 

drain current is 1.13233. This change In drain current is not 
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significant a.lthough it could be if low biasing conditions are needed. 

The I-V characteristics shown in this Figure are not very smooth 

although the trend is increasing upward. This nansmoothness is due 

to numerical computation error, 

S.S Transconductance and Capacitance 

Figure 25 is a plot of transconductance vs. drain voltage. The 

transconductance is a measure of how the drain current changes for a 

change in gate voltage. As the drain bias increases the 

transconductance of the device increases as shown in Figure 25. The 

transconductance at a drain bias of 3,0 volls is 0.4 millimhos while 

the transconductance is 4.0 millimhos at a drain bias of 5.0 volts. 

This is due to the fact at a drain bias of 5.0 volls the device is in 

saturation whi le at the drain bias of 3.0 volts the device is in the 

subthreshold region. This fact agrees well with results obtained for 

the pinch off voltage of the device (see Section 8.3). 

The input capacitance vs. drain voltage is shown in Figure 26. 

This capacitance increase with drain voltage and thus also with drain 

current. This increase comes from the increase in drain current. 

With more drain current the charge in the channel is greater and thus 
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the channel capacitance is greater. For example a drain bias 012.0 

volts corresponds to an input capacitance of 30 pF while at a drain 

bias of 5.0 volts the capacitance is 150 pF. This is do to the lact that 

4.0 volts of drain voltage is indeed the pinch off vOltage of the device 

and the input capacitance of the device is expected to increase 

sharply. The input capacitance is the parallel combination of the 

oxide capacitance and the channel capacitance. The input capacitance 

behaved similar to the transconductance. If the input capacitance is 

the major concern in the device the program can simulate different 

designs until the optimum, or desired, design is found. 

The transconductance and input capacitance can be used to 

determine the maximum operating frequency of a device. This 

frequency is simply the transconductance divided by the input 

capacitance. For device 3, the maximum operating frequency is 4.2 

MHz. This operating frequency is dependent on the input capacitance 

which is a function of the channel length. With smaller channel 

length the input capacitance decreases and correspondingly the 

maximum operating frequency increases. For device 3 with L-Q.73 J.1m 

the operating frequency of 4.2 MHz can be increased by decreasing the 



channel length. The problem in dOing this, as has been discussed 

before, is the short channel effects start to become very noticeable. 

8.6 Future Wor1o; 

This thesis is a three dimensional simulation of a short channel 

MOSFETs wit l1 the ellacts at the trapped oxide charge. Future work 

that may also be done in this area is a transient simulation of shM 

channel MOSFETs, carrier heating in the channel region and different 

types 01 doping and fabrication structures. 

so 
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TABLE 1 

DeYlce 1 DEYICE 2 DEViCE 3 

Channel 1.0 !-1m 1.0 !-1m O.731lm 

length 

Channel 1.5 ).lm , .51lrn 10.0 11m 
width 

Drain and O.31J.m 0.3 jlm 0.13 ).1m 

source 
lengths 

Junction Q.31lm 0.3 Jlrn 0.13 ).lrn 

depth 

Oxide 1QlO cm·2 101O cm'2 10 1O cm-2 

charge 

Oxide 260 A 260 A 260 A 
Ihic\(ness 

Drain and 1017cm'3 1017cm-J 1020cm-3 
source doping 

Substrate 1015cm -3 7·1015cm-3 7·t016cm-3 
doping 

Height 01 1 .5~m 1 5"m 0.8 !-1m 
device 
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Figure 1. Representation at MOSFET geometry used in simulation. 
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c------------------------------------------------------------------------------
C Jake Baker , 
C The.is program , 
c------------------------------------------------------------------------------c 

c 

c 

c 

real · 8 
r.al · 8 
rea l· 8 
real *8 
real *8 
real · S 
rea l* 8 

1 
xdist(60),ydlst(60),~dlst(60) 

$i (35,30, IS) ,n! 35, 30, 15) ,pi 35, 30, 15) 
mun( 35, 30, 15) ,IIUp( 35, 30 ,15) ,doping! 35, 30, IS) 

rg( 35, 30,15), jtot( 35, 30,15) 
xlzllllbda2 
ersi (35,30, IS), ern( 30,25,3) ,erp( 30,25,3) 

open( uni t _14 ,fi le_' 1 psub. in' ,5 ta tus-' ol d' ) 
open(unit_15, f ile_'total.out' ,status_'old') 

call ipGub(te.p.I,~.d.l.rj.vg.vd,qox,dopds.ssd.h,tox) 
write(6, * ) , Input para.eter, co.pleted' 

C do 17 vg_1,3 
C do 16 vd-O.,5.5,.5 

call initguesl(te.p,l,~.d'l.rj.vg,vd,qox,dopds,.sd.h,tox. 
+ wd.ws,VID,ys.yd.vbi,sls) 

C wrlte(6, * ) , lnitguesl completed' 
C 

call .e$h{nx,ny.nz.xdist,ydi.t.zdist,l.z,dsl,rj,h.wd,w •• v.,vb!.sis, 
+ yd.doping.dopd •••• d) 

C write(6 ,* ) , Mesh routine co.pleted ' ,nx,ny.n~ 
C 

call diffuse(n x, ny.nz.xdilt,ydlst.zdist , rj.l,dsl,h.sld.dopd •• doping, 
+ n,p,sl) 

C wrlte(6. * ) 'Diffuse completed' 
C 

call initgues2(nx,ny,n~,xdllt.ydi$t,2dist,rj,dsl,1.sis,vd,wS,vm, 
+ vbi •• sd,dopd •• te.p,li.n.p.vd.h) 

C write(6, * ) • Initgue$2 completed' , 
C do 10 lit- I,) 
C It(iit.eq.l)go to 18 

call boundcond{.i.n,p.ox,ny,n~,xdist,ydist,zdl.t,te.p,qox,l, 
• z,dsl,vg.vd,toI,fg,l.d.mun,mup,doping,jtot) 

C vrite(6, * ) , Boundcond routine completed' 
C 
C 

call scaleit(si.n , p.doping,mun.mup.rg, xl ambda2 , temp.nx,ny.nz, 
+ xdist,ydist.zdist) 

C writa(6, * ) , Scaleit routine completed' 
C 

call so l jacsi(nx,ny.nz.xdilt,ydist.zdist,si,n.p,doping,xlambda2, 
+ mup'''un,rg.ersl) 

C write(6. * ) , Soljacsl routine completed' 
C 

call unscaleit{si . n,p,doping,mun.mup.rg,xlambda2,te.p,nx,ny,n~.xdist. 
• ydlst.~di£t) 

C write(6.*) , Vn£caleit completed' 
c 

go to 66 
18 continue 

call boundcond(si,n.p,nx.ny,nz,xdist,ydist,zdist,temp,qox,l, 
+ z.dsl,vg,vd.tox.rg,.sd,ftun.mup.doping,jtot) 

C write(6, * ) , Boundcond routlne completed' 
C 
70 call mobility(mun, mup.doping •• l,n,p.nx,ny,n~,temp,xdist,ydist,zdist) 
C vrite{6,*J • Mobility routine completed' 



o 
C call recgen(si,n,p,nx,ny,nz,temp,xdist,ydist, zdist,rq .doping.mun, 
c + mup.jtot) 
C writet6," ' Recqan r outine completed' 
o 

call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp.qox,l. 
+ z,dsl,V9. vd ,toX,[Q ••• d.aun.aup.doping.jtot) 

C write(6,*) • Boundcond r out ine compl eted' 
o 

call scaleit(si,n,p,doping.aun,lIup,rg.xlambda2,temp,nx,ny,nz, 
+ xdist,ydist,zdi st) 

C wrlte(6,*, • SClIleit routine cOllpleted' 
o 

call soIjacn(nx,ny,nz,xdist,ydist,zdist,si,n,p,doplnq,xlallbda2, 
+ mup,mun,rg,ern,dopds) 

C write(6, * ) , Soljacn rout!ne completed' 
o 

call unacaleit(sl,n,p,doplng,mun,mup,rg,xl.abda2,teap,nx,ny,nz,xdist, 
+ ydlst,zdiat) 

C write(6,*, • Unsealeit completed' 
o 

c~ll boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,te_p,qox,l, 
• z,dsl,vq,vd,tox,rq, ssd,_un,_up,dopinq, jtot) 

C write(6,*) , Boundcond rout ine completed' 
o 
o 
o 

c~ll mobilitY(lIIun,mup,dopinq,.i,n,p,nx,ny,nz,telllp,xdi't,ydlst,zdist) 
write(6,") , "obility routine completed' 

call recqen(si,n,p,nx,ny,nz,temp,xdist,ydist,zdi st ,rq,dopinq,.un, 
+ mup,jtot) 

C write{6,*) , Recqen routine completed' 
o 

call boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,l, 
+ z,dsl,vq,vd,tox,rg,.sd,lIIun,.up,doping,jtot) 

C write{6,*' 'Soundcond cOlllpleted' 
o 

call scaleit(si,n,p,doping,.un,lIIup,Ig,xlalllbda2,telllp,nx,ny,nz, 
* xdist,ydi st,zdl.t) 

C write(6,*) , Scaleit routine cOlllpleted' 
o 

c~ll soljacp(nx,ny,nz,xdist,ydist,zdist,si,n,p,dopinq,xlambda2, 
+ mup,lIIun,rg,erp, •• d) 

C wdte(6,"' ' Soljacp routine cOllpleted' 
o 

call unscaleit(si,n,p,doping,lIIun,lIIup,Iq,xlambda2,telllp,nx,ny,nz,xdist, 
• ydist,zdist) 

C write(6,*) , Unscaleit completed' 
10 continue 
o 

call boundcond(.i,n,p,nx,ny,nz,xdist,ydist,zdist,tellp,qox,I, 
• z,dsl,vg,vd,tox,Iq,ssd,mun ,mup,doping,jtot) 

C write(6,*) 'Soundcond co.pleted' 
o 
o 

current-O.O 

do 101 iz_2,nz_l 
do 102 iy- 2,ny-l 

current-jtot(2S,iy,iz ) *fydist(iy+l)-ydist(iy) 
+ ). (zdist ( h+l )-zdist( iz) )+current 

102 continue 
101 con tinue 

write{6,*)vg,current,qox 
current-abs(current) 
write(15, * )vd,current 

16 continue 
write(15, * ) 



l' continue 
66 call printr (ai.n.p.xdiat.ydiat.zdist.nx.ny.nz.doping •• un.~up.tg.temp 

c 

+ ,jtot) 
vrite(6. * ) • Print to file routine completed ' 
stop 

'"' C---------------------------------------------------__ ----__________________ _ 
C ~ubroutine initguea~ clIolulate. the initial guess for the .ol ution 
C----------------------------------------------------------------------------
C 

c 

.ub r outine in i tguesIlte.p.l.z.d.l.rj.vg.vd.qox.dopd •••• d.h.tox. 
+ vd .ws. wm.ys.yd.vbi •• i.) 

real - 8 1 
vbip_(1.l8e-2 3*te mp/l.6e-19) * tlogts.d/l . 4SelS) ) 
.i._vbip*2 . 0 
vbi_ll.38e-23 *temp/I .6e-19)*(log(dopds/l.4SelS) ) 
cont_2.0 *11 .9 *8.8Se-14/ll .6e-19*s.d) 
wd_.qrt(cont o(vd+vbi)) 
v._~qtt(cont * vbi) 

v._.qrt(cont* sis) 
go to 10 
vdte{6. * ) 
vriU(6. * ) SIS - •• si •• • CII' 
vrite(6. * ) VB I _ ·.vbi.· em' 
vtite(6. * ) CONT - ' .cont.· e.' 
vrite(6. * ) WD - •• wd.· CII' 
write(6,*, ws - ·.v •• • em' 
write(6, * ) WM - ·.v ... • em' 
write(6 .- ) YD - •• yd,· cm' 

10 write(6, * ) 
re~urn 

'"' c 
C----------------------------------------------------------------------------
C subroutine initgues2 puts initial guess into determine mesh points 
C----------------------------------------------------------------------------
C 

c 

.ubroutine initgue.2(nx.ny.nz.xdi.t.ydist.zdi.t.rj.d.l.l •• i~.vd.ws,w •• 
+ vbi.s&d,dopd~.te.p.si.n,p.vd.h) 

• 

• 

real " S xdist(60).ydi.t(60),zdist(60 ) .1 
real *S si(lS.lO.IS).n(lS.lO.lS).p(l5 .l0.1S) 

do 10 iz-l.nz 
do 20 iy_l . ny 

d o 30 i x _ l ,nx 

if (xdist(ix) .le.d~l) then 
if (ydist(iy).ge.(h- r j)) then 

sl(ix.iy.l~'_vbi 
el.e 

si (ix. iy. h )-vbi *exp (-( (h-rj-ydis t ( if)) )/VI) 
end if 

elseif (xdist(ix).ge.(ds1+1)) then 
if lydIst(Iy).ge.(h-rj») then 

si{ix.iy,i~)_vbi+vd 

else 

else 
s! (Ix. if, iz )_(vbi +vd ) "exp ( -( ( h-rj - ydIst( iy») ) 

/ vd) 
end if 

if (xdist(lx).le.(dsl» then 
if (ydi&t(iy).ge.(h-rj») then 

si(ix.iy.iz)-vbi *exp(-tsqrt({xdist{Ix)­
dal) · *2 . 0)/vs») 



C 

• 

• • 

00' 

ellle 
Illi~,iy,i~)-vbi·exp(-(5qrt( (xdilt(ixl·dsl) 
··2.0+(h-rj-yd!&t(1yJ)··Z.O))/ wI) 

end 1 f 
e151! 

if \ ydlBt \ ly l . ge.\h-rj)) then 
11(lx,ly,izl_lvbi+vdj *exp!_(lqrt((_xdilt(lx) 
+l+dll)· · Z.O)/wd)) 

II (Ix. iy, h ) .(vbi+vd l " e xp(- ( Iq r t( (l+d$l­
xdht(ix) ) 
··2.0. ( h-rj-ydistC iy)) "* 2 . 0) l/wd ) 

end if 
end if 

if 

30 continue 
20 continue 
1 0 conti nue 

c 

vrite(6,*, 'WS_ ',v. 
wrlte(6,*, '.,d .. ' ... d 
writl(6, * ' 'v ... ' ..... 
return , .d 

c----------------------------------------------------------__________________ _ 
C s ub rout ine i plub re I d, input vIlu •• fr o. I file. 

c-----------------------------------------------------------------------------c 

c 

sub r ou t ine ipsub(teap,l,z,dsl,r j ,vg.vd,qox,dopds,ssd,h,tox) 
real*S 1 

'eed(14,lO) temp,l,z,d . l,rj,vg,vd,qox,dopds, s.d,h,tox 
10 format (1 215e15) 

c 

write(6, * ) 
wri te (6, *' 
writa(6, · , 
writa(6,* , 
write(6,· , 
wr1te(6, * ) 
write(6, * ) , 
write(6,*, 
write(6, · , 
write{6, * ' 
write(6, * , 
write(6, * , 
write(6,') 
write(6, " ' 
r eturn , .. 

Temperature: ',temp 
Channel length: ',1 
Channel width: ',z 
Drain and source length : ',dsl 
Junction depth: ',rj 
Gate volu.ge: ',vg 
Drain voltage, ',vd 
Ox ide charge: ',qox 
Drain and .ource doping: ',dopds 
Substrate doping: ',sid 
Height of device, ',h 
Oxide thickne •• : ',tox 
Di f fusion process: ',diftype 

C------------------------------------------------------------------------------
C subroutine me5h determine. the !lesh points necessllry for si.ulation for 
C short chennel !lOSFET's 
C------------------------------------------------------------------------------
C 

c 

subroutine mesh(nx,ny,nz,xdist,ydist,zdist,l,z,dsl,rj,h,wd,ws,w.,vb!, 
+ sis,yd,doping,dopds,ssd) 

reel0S 1,xdist(60),ydist(60),zdist(60',doping(35,30,15) 

nx-3S 
ny-30 
nz - l S 
do 10 iz_l,nz 

zdist(izl-(z · (iz-l)/{nz-l) ) 
10 continue 



do 20 iy_l,ny 
ydist{iy)_h~{iy-l) /(ny-l) 

20 continue 
do SO 11<-1, m< 

~dist(ix).( (2.0 - dsl+1) * (1x-l)/( nx-l.0 )) 
50 continue 

, 
return 
'0' 

c----------------------------------------------------------------------------
C subroutine diffuse cOlllputes the diffusion doping pro f ile. 
C----------------------------------------------------------------------------, 

, 
subrou t ine d if fu se(nx , ny,nz,xdlst,ydlst,zd i st,rj,l,dsl, h, ssd,dopd5, 

+ doping,n,p,si) 
real * 6 xdist (60), yd l$t(60),zdilt(60),dopi ng(35,lO,15), 1 
real · 6 n(35,30,15),p(35,30,15),sl(35,30,IS) 

c calculate the doping va l ue • . , 

, 

, 
, 
, 

, 

, 

do IS 1z_1,nz 
do 25 iy_l,ny 

do 35 ix_l,nx 
iff (~dist( i x ). le .dsl) .or. t~dist( ix) .ge . 

+ (ds1+l))) then 

• • 

• 
• 
• 

i f (ydist(iy).ge.(h-rj))then 
doping(ix,iy,iz)_dopds-ssd 

e l s e 
hh--ydi.t(ly)+h-rj 

e nd i f 
dopi ng ( i x, i y, 1 z) _dopds*exp ( (-hh *. 2 )/3e-11 ) -ssd 

else 

i f ( ydist( iy) .gt .h-rj I then 
doping (ix,iy,izl_dopds· (exp «-{_dsl + xdist(ix)) ·~ 2 

1/3e-lll +exp (( - (dsl +1-xdi lttix)) ** 2 
)/3.-11 I I-asd 

e l s e 

e nd if 

end if 

doping(ix,Jy,iz )-dopds*(exp(- ((-dsl+ xdist(ix))*_2+ 
(h-rj-ydist(ly)) ·* 2)/3e-ll)+exp(_!(dsl+ 
l-xdist(ix))··2 +(h-rj-ydist(ly) ) ** 2) 
/3e-11) )-ssd 

35 con tinu e 
25 continue 
I S conti nue , 

do 45 iz .. l,nz 
do SS iy-l,ny 

do 65 ix_l,nx 
n(ix,iy,iz)-dop ing(ix,iy,iz) +ssd +1e2 
p (ix,iy,iI)_ 210eI8/n(ix,iy,iz)+le2 

C if ( xdlst{ i x ) . gt.dsI.and .xdist (i x ).1 t.dsl+l.and .ydht( iy I .gt. h-rj )then 
C n{ix, iy, i z I-doping! ix, iy, iz )+le2 
C p I ix, iy, i z )-210eI8/n( ix, iy, 12 l+le2 
C end if 
65 conti nue 
55 continue 
45 conti nue 



c , 
return 
'0' 

c------------------------------------------------------------------------------
C .ubrou~ine printr writes da~a to files inorder t o graph on eontrol - e system. 
c------------------------------------------------------------------------------
C 

subroutine printr{.i,n,p,xdist,ydi s t,~dist,nx,ny,n~,dopinq,mun, 

+ mup,rq,temp,jtot) 
real.S si{35,30,15),n{35,30,15),p{35,30,15),doping(35,30,lS) 
real.S mun(3S,30,lS) 
real *S xd ist(60) ,ydist(60) ,zdi&t{60 ) ,~up(35,30,15),jtot(35,30,15) 
r a al oS rg{35,30,15) 

open(unit_l,fi la_' xd.dat' ,form_'formatted') 
open(unit_2,file_'yd.dat' ,form_'formatted') 
open(unit-3,fila-'zd.dat' ,form_'formatted') 
opan(unit_4,file_' xdist.dat' ,form_'formatted') 
ope n (unit_S,file_'ydist.dat' ,form_'formatted') 
opan(unit-29,file-'rq.dat' ,form-'format t ed') 
open(unit_21,fila_'mun.dat' ,form-'formatted') 
opan(unit_22, fi le_'mup.dat' ,form_'formatted' ) 
open(unit_23,file_ 'dop.dat' ,form_'formatted') 
open(unit-2S, f ile-'j tot.dat' ,form_'formatted') 

do 30 i-l,nx 
write(4,20) xd ist(i) 

30 continue 
do 40 i_l,ny 

write(S,IO) ydist{t ) 
40 continue 

write{S,·) 
do 50 j _l, ny 

do 60 i_l,nx-l 
write(2,10 ) loqlO(p(i,j,2)) 
write(l,lO)10glO{n(i,j,2) ) 
write(29,10)10qlO(abs(rg(i,j,2 )/lelS +1») 
write(3,10) &1(1,j,2) 
write(21,lO) mun(i,j,2) 
write(22,lO ) mup(i,j,2) 
write(23,10) 10g10(abs{dopinq(i,j,2)) 
write(2S,lO) jtot(i,j,2) 

60 continue 
write(2,g9) loglO(p{nx,j,2)) 
write(l,99)10glO(n(nx,j,2)) 
write(3,99) &i(nx,j,2 ) 
write {29,99)10glO(abs(rq(nx,j,2) /le lS+l) ) 
write(21,99) mun(nx,j,2 ) 
write(22,99) mup (nx,j,2) 
write(23,99) loglO(abs(doping(nx,j,2) )) 
write(2S,99) jtot {nx,j,2 ) 

50 con t i nue 
20 f orma t (e20 .S ) 
99 !ormat(e20.S) 
10 formatle20.S,S) 

return 
'0' c 

c-----------------------------------------------------------------------------
c subroutine mobility 
C----------------------------------------------------------------------------
C 

subroutine mobility(mun, mup,doping,si,n,p,nx,ny,nz,temp,xd i st, 
+ ydist,zdist ) 

real oS mun(35,30,15),mup{35,30,15),dop1ng(35,30,15) 



, , , , 
, 

real~6 3i(3S,30, 1 5),n(3S,30,lS),p(35,30,15) 
real *6 xdist(60),ydJst(60) ,zdist(60),ex ,ey,ez,e 

do 10 Jz_2,nz-l 
do 20 iy_2,ny-l 

do 30 i x-2,nx-l 

This pInt of 
scattering . 

the program predicts acoustic deformation potential lattice 
This particular model has been given by Sah et al. 

xmunl_l. 0/( (1.0/( 4195 * (temp/JOO. 0) ** (-1 . 5) ) )+( 1. 0/( 2153 ~ 

• (temp/300.0)· *{-3.13») ) 

C The next part of the progum predicts ionized impuri t y scattering as well as 
C lattice scattering. , 
, • 

xmunli_xmunl/sqrt(I.0+abs(dop1ng(ix,iy,iz) )/«3 . 0e16)+ 
abs(doping(ix,iy,iz»/350.0» 

C This part of the program takes the gudient of the electric field . , 

, 
ex-( si Ox+!, iy, h )-si (ix, iy, iz) )/( xdist( ix +l )-xdlst( ix) ) 
ey_( 51 (ix, ly+l, lz )-s1 (ix, iy, i z) )/(ydist( iy+l )-ydlst( 1y) ) 
ez_( 51 {ix, iy, 12:+1 )-si (ix, iy, i z) )/( zdist( i z+1 )- zdist( iz) ) 
e_sqrt(ex··2+ey·· 2+ez **2 ) 

C This part takes the consideration of the cinrier heating mobility. , 

, • • 
mun(ix,iy,iz)_xmunli/sqrt(I.0+abs(doping(ix,iy,iz»/(3e16+ 

abs(doping(ix,iy,iz»/3S0)+(e/3.5e3) *· 2/(e/3 . Se3+ 
8.8) +{e/7.4e3)··2) 

C The next part of the program does the same as the proceeding except 
C that holes are now conSidered . , 

xmupl-l. 0/( (1. 0/( 2502* (temp/300. 0) " (-1.5» )+( 1. 0/( 591 ~ 
+ (temp/300 . 0) ** (-3.25) » ) 

xmupli - xmupl/sqrt(I.0 +abs(doping(i x.iy,iz) )/( (4eI6)+ 
+ abs(dop i ng(ix,iy,iz»/81» 

mup(ix,iy,iz) - xmupli/sqrt(I.0 +abs(doping(i x,iy,iz) )/(4eI6+ 
+ abs! dopingOx, iy, iz) )/81 )+( e/6 .le3) **2/! e/6 .le3+1. 6)+ 
+ (e/2.5e4) ** 2) 

30 continue 
20 continue 
10 continue 

, 
return 
,od 

C----------------------------------------------------------------------------__ 
C sub r outine recgen 
c---------------------------------------------------------------------________ _ , 

subroutine recgen(si,n,p,nx,ny,nz,temp,xdist,yd ist ,zdist,rg,doping. 
+ mun,mup,jtot) 

real*8 doping( 3S, 30,15), mun( 35.30,15) ,mup( 35,30, 15) 
reaP6 xdist( 60) ,ydist( 60), zdist (60 J ,p( 35,30,15 J ,n( 35,30,15) 
r eal *8 si(35,30,15),jtot{35,30, 1 5) 
real *8 rg( 35, 30 ,15 ) ,xnx ,yny, znz,xpx, ypy, zpz, xjnx, yjny, zjnz , xjn, X'jp 
renl - 8 rii,alphan,alphap,xjpx,yjpy,zjpz,ee 
real "8 eX,ey,ez 

do 10 iz_2,nz-l 
do 20 iy_2,ny-l 

do 30 ix .. 2,n~-1 
taun-(4e-4)/(1.0+abs(doping(ix,iy,iz) )/7.1e15) 
taup-(4e-S)/(1.0+abs(doping{ ix,iy,iz) )/7.1eI5) 



c 

c 

C 

r5rh_(n(i x ,iy,iz) *p{ix,iy,iz)-210eI8)/{ t aup * (n/i x ,iy,iz)+ 
I. 45el5 )+( tllun* (p{ ix, iy, iz )+1 . 45eI5)) ) 

rllu_(2.Se-31 *n/ix,iy,iz) +9 . ge-32*p(ix,iy,iz)) * (p(ix,iy,iz) 
*n! ix, iy, iz )-210eI8) 

ex_-( 5i I Ix+l, iy. i z )-si (ix, iy, iz) )/1 xdi5t (ix+l )- xdis t (i x ) ) 
ey--( 5i I ix, iy+l , iz )-sl I ix, iy, iz) )/1 ydist( iy+l )-ydist\ iy) ) 
ez--( 5i (ix, iy, i:ul )-51 (ix, iy, iz) l/( zdist( iz+l )-zdi5t( iz) ) 
ee _( ex ** 2+ey** 2+ez **2)**O.5 

if( e e.gt.O) then 

else 

IIlphan_( 1 . Oe6 ) *exp( 0.0-( 1. 67e6/ee) ) 
IIlphllp-(2.0e6) *exp(0.0-(2.0e6/ee) ) 

1I1phlln_0 . 0 
IIlphllp-O.O 

end if 

xnx_( n( ix+l, iy, i2 )-nl ix, iy, i2) )/1 xdist (ix+l )-xdist( ix)) 
yny_1 n( i x , iy+l, iz l-nl ix, iy, iz) )/(ydist( iy+1 )-ydist( iy)) 
znz_( n( ix. iy, I z+ 1 )-n( ix, iV, h) )/( zdis t ( h+l )-zdist( iz)) 
xpx_( p( i x+l, iy, iz )-pl ix, iy, h) )/( xdist( ix+1 )-xd i st( i x ) ) 
ypy_( p( i x , iy+l, iz I-pI ix, iy, iz) )/(ydist (iy+l )-ydist(iy) ) 
zpz_( pI i x , iV, h+1 I-pI ix, iy, iz) )/1 zdist( iz +l ) - zd i st(iz) ) 
xjnx_n(ix,iy,iz) *mun(ix,iy,izj *ex +«O . 026) *temp/300.0) * 

+ mun(ix,iy,iz) *xnx 
yjny_n(i x ,iy,iz) *mun(ix,iy,iz) *ey+«O . 026) *temp/300.0) * 

+ munl i x,iy,iz) *yny 
zjnz_n(i x ,iy,iz) *munlix,iy,iz)*ez +«0.026) *temp/300.0) . 

+ mun(ix ,iy,iz)*znz 

x jpx_p( i x , iy, iz) . mup( ix, iy, iz) *e x-( o . 026 *temp/300 . 0) * 
+ mup(i x ,iy,iz) *x p x 

yjpy- p{ix,iy,iz)*mup(ix,iy,iz)*ey - {O.026 *temp/300.0) * 
+ mup(ix,iy , iz) *ypy 

zjpz_p(ix,iy,iz)*mup(ix,iy,iz)*ez-(0.026 *temp/300.0) · 
+ lIIup(ix,iy,iz) * zpz 

xjn_(xjnx ** 2+yjny* *2 +zjnz**2)* *0.5 
xjp_(xjpx* * 2+yjpy *·2 +zjpz *·2)*·0.5 
x jn_xjnx 
x jp_xjpx 
rii _O.O-(alphan *x jn+alphap · xjp) 
jtot( ix, iy, lz )_1 xjn+xjp) * I le-19) 
'glix,iy,i z )-(rsrh+rau+rii) *le-7 * O.0 

30 continue 
20 continue 
10 continue 

c 

return 
"0' 

c----------------------------------------------------------------------------
C subroutine boundcond calculates t he boundary conditions. 
C----------------------------------------------------------------------------
C 

subroutine boundcond(si,n,p,nx,ny,nz,xdist,ydist,zdist,temp,qox,l, 
+ z,dsl,vg,vd,tox,rg,ssd,mun,mup,doping,jtot) 

real*S 51 (]5, 30 , 15) ,nl 35,30,15 ) ,pI 35, 30,15) ,mun( 35, 30,15) 
real * S jtot(35,30,15) 
re"l *S xdist( 60) ,ydistl 60), zdistl 60), mupl 35,30,15) ,doping( 35, 30, 1 5) 
relll *S rgI35,30 , 15) , 1 

iy- ny 
do 10 iz-l,nz 

do 20 i x-l,nx 
mun( ix, iy, iz) _mun( ix, iy-1, iz) 
mupl ix, iy, izl_mup( ix, iy-1, i 2) 



c 
" 

C 

• 
• 
• 

• 
• 

• 
• 
• 

rql Ix. iy. 1'1 )_rq( ix, iy-l, iz) 
jtot\ ix,ly.lz )_jtottix,iy_l.iz ) 

if(xdist(tx).le.dlll) then 
n{ix,iy,iz)_O.S*j.qrttdopln9(lx,Jy.lz)··2 ••. 0-210 e18J 

+doplng( ix. if. lz)) 
pi ix,iy. i&).O.~· (.qrttdopin9( ix, if, i zl ' ' 2+4.0 *210.,18 ) 

-dopinq(ix,ly.iz))+1.Oe2 
6i ( ix, iy. iz I_I 1. 38e-23otellp/l. 6.,-19) °l o'.!! doptn ... ! ix. iy. iz II 

1.45 .. 15 ) 
elseif! xdist t ix) .9t.dsl.~nd.xdi&t (ix) . h.dal+ l) then 

51 (ix, iy. iz ).qox*1.6e-19+vg * (3 . 9 *B. 85e-14 )/tox+( 11. 9*S. SSe 
-14) ' s1 (ix. iy-l, iz III ydist( iy )-ydilt( if-1) ) 

51 (ix, iy. lz )_.1 (ix, iy, 1z lit (( 11. 9*S. 85e-14 III ydht (iy)-
ydht( iy-1) )+( 3. 9*e. 85e- 14 I/tax) ) 

vdx_vd* ( 1- ( hdsl-xd iat ( i x) );1 ) .. 2.0 
n(ix,iy,iz)_ (210elB/ssd) *exp{(s i(ix,iy,izl_vdx) / .026)+l e 2 
p(ix,iy,iz )_ssd"exp (_sl( ix,iy,iz l/.026) +le2 

else 
n ( ix, iy, iz )_0. S" (Iqct(dop ing ( ix. iy. iz) "2+4 .0 - 210e18) + 

doping( ix, iy. I z)) 
p(lx.iy.iz )_O.S " (lqrt(doping{ix.iy.iz » >2+4.0·210eI8)_ 

doping (lx,i y,lz))+1. 0e2 
si(ix.iy.iz)_vd+(1.38e_230temp/l.6e_19)"1og(doping(ix,iy,iz) 

/1.4SelS) 
end if 

20 continue 
10 continue 
C 

ly-l 
do 11 iz-1.nz 

do 21 ix_l.nx 
li(ix,iy,iz)_li(ix,iy+l,iz) 
n(ix,iy,iz)_n{lx,iy+l ,lz ) 
p(ix.ty.!z).p{tx.iy+l.tzl 
jtot( ix, iy. iz I-jtot( ix. iy+1, iz) 
aun(ix.!y.iZ).lIun{ix,ly+1,iz) 
lIupllx,iy , iz).lIup{lx,!y+l,iz) 
cg ( ix,iy,iz l_rg(ix,iy+l,ix) 

21 continue 
11 continue 
C 

1x_1 
do 12 iz- l,nz 

do 22 iy- l,ny 
li( ix,iy, iz)_li(ix+l,iy, i z) 
n(ix.ly,iz)-n(ix+l,iy,izl 
p( ix, iy, iz I_pi ix+l. iy, i z) 
mun! ix, iy, iz I-mun( ix+1, iy, iz I 
jtot(ix , iy,iz)_jtot(lx+l,iy,lz) 
mup ! ix. iy, iz 1-lIup( Ix+l, iy, iz) 
Ig(ix,iy,iz)_rg(ix+l , iy,iz) 

22 continue 
12 continue 
C 

Ix_n x 
do 13 iz_1,nz 

do 23 iy.l, ny 
Ii! Ix. iy, iz l"lt (ix-I. iy. iz) 
n(ix,iy,iz )_n{i x_1,iy,iz) 
jtot I lx, iy, iz )-jtot( ix-I, iy, i~ I 
p( ix. Iy, hI-pi 1x-1. iy. iz) 
mun( ix, iy, 12 )_mun { lx-I, iy, iz) 
mup! ix. iy. iz l .. mup! ix -I , iy. i z I 
Ig(ix,iy,izl-rgI1x-l,iy,iz) 



2J continue 
13 cont i nue 
C 

iz _ l 
do 14 iy .. l, ny 

do 2 4 ix _1 , n x 
sl(i x ,iy,iz) _si(ix , ly,lz +l) 
n( lx, Iy, iz ) _ n( l x , iy, iz+l) 
p(l x ,iy,lz)_p(i x ,iy,lz+1 ) 
jtot(ix ,iy,iz)_j t ot(l x ,iy,iz+1) 
mun( ix, iy , iz )_mun( i x , iy, Iz+l) 
mup( ix, Iy, iz) -mup( lx, Iy, iz+l ) 
[9( lx, iy,iz)-r9(l x, iy,iz+l) 

24 continue 
14 con t inu e 

i .z_nz 
do 15 iy_l,ny 

do 26 ix _l,nx 
$i (i x ,l y, i z ) _sl( ix, iy,I;: - I) 
n( i x,ly,iz)-n(l x ,iy,lz-l) 
p(lx,iy,iz)-p(ix,ly,iz-l ) 
j t ot( ix, ly, iz )_jtot( i x , ly, iz-1) 
mun( ix, I y , iz ) _mun( l x , iy, Iz- l ) 
mup( I x , ly, i z ) _ mup( i x , Iy, iz-l ) 
<g(lx,ly , iz)-[9(ix , ly,lz-l) 

26 continue 
15 con tinue 

, 
r e t urn 
' 0' 

c------------------------------------------------------------------------------
C s u brou t ine unscaleit unscales arrays . 
c-----------------------------------------------------------------------------, 

subroutine u n scaleit(si , n,p,doping,lnun, mup, r g,xlambda2, t e mp , n x ,ny , nz , 
+ xdis t ,ydist,zdist) 

real *8 muo( 35 , 30,15) ,mup( 35,30,15). sl (35 , 30 , 15 ) ,doping( 35.30,15) 
real *8 n( 35, 30 , 15) , pI 35 , 30 , 15) , xdist ( 60), ydls t ( 60), zdlst( 60), x lambda2 
, e a1 *8 r9(35,30,15), mvo 

r go_36.0 *le20/( (4.0e-3) ** 2) 
sio_ t emp * (1.38e- 23)/l . 6e- 19 
mvo-36 . 0/s I 0 

d o 10 iz-l,nz 
do 20 iy_l,ny 

d o 30 i x _l, nx 
Dlun( lx , iy, iz ) _mun( ix, I y, iz) *DlVO 
mup( IX. Iy, iz ) - mup( ix, iy, i z) *mvo 
Ed (ix, iy, Iz ) _sl (Ix, l y, iz) *slo 
n( i x , iy, iz ) _ n( ix, iy . i z ) *1. Oe20 
p(lx , ly,iz)-p( l x, i y,i z )*1.Oe20 
dop i ng ( lx , Iy, iz ) _doping ( ix, iy, i z ) * 1 . Oe20 
rg( i x , Iy, iz )_rg ( ix , iy, i z ) * rgo 

30 continue 
20 continue 
1 0 continue 

do 11 I x _ l ,nx 
xdist(ix) _xdist(i x ) *4 .0e-3 

11 continue 
do 12 iy_l, ny 
ydis t (i y ) _ydi s t(iy) * 4 . 0e_3 

12 continue 
do 13 Iz - l , nz 
zdis t (lz)-zdist(lz) * 4 . 0e-3 



U I;ontinue 
~ .. tu~n 
eod 

c c----------------------------------------------------------------------------
C subroutine scale1t scales the arrays . 
c----------------------------------------------------------------------------
C 

c 

subrou t ine scaleit{si,n,p,doping,mun,mup,rg , xlambda2 , temp,nx ,ny,nz, 
+ xdist,ydist,zdist) 

real *e s1 (35,30 , 15) , n( 35, 30,15) ,p( 35, 30,15), doping( 35, 30 , 15) 
real . e mun( 35,30,15), mup( 35,30,15) ,mvo 
real-e xdist(60),ydist{60),zdist(60) 
real - e rg(35,30,15),x l ambda2 

rgo_36.0 *1.0e 20/( ( 4 .0e-3) ~* 2) 
sio_temp*( 1 .3ee-23)/1.6e-19 
mvo_36.0/s i o 

do 10 i z_1,nz 
do 20 iy-l,ny 

do 30 ix-l , nx 
mun(i x ,iy,lz)_mun(ix,ly , iz)/mvo 
mup{ix,iy,iz)_mup(ix, i y,iz)/mvo 
si (ix, iy, iz )- si (ix, iy, iz )/sio 
n( ix, iy, i z )_n( ix , iy, i z )/1. Oe20 
p(ix,iy,iz)_p(ix,iy,iz)/1.0e20 
dopinq(ix,iy . iz)_doping(ix,iy,iz)/1.0e20 
rg( ix, iy, iz )_rg( ix, iy, iz )/rgo 

30 continue 
20 continue 
10 continue 

xlambda2-(s i o *11.9*e . S5e-14)/«(4.0e-3) ** 2) *1.6e-19*1 . Oe20) 
do 11 i x_1 , nx 
xdlst(ix)_xdi&t(i x )/4.0e-3 

11 continue 
do 12 iy_l , ny 
ydist(ly)_ydist(iy)/4. 0e-3 

12 conti nue 
do 13 iz_1,nz 
zdist(iz)_zdist(iz)/4 . 0e-3 

13 continue 
return 

'"' c 
c------------------------------------------------------------------------------
C function B returns the value of h . 

c------------------------------------------------------------------------------, 
, 

, 

real *S function b(x) 

if (x.eq.O) then 
b-1 

else 

end if 
return 

'"' 
C----------------------------------------------------------------------------_ 
C function FlA returns the value of a of functio n Fl c--------------------------------------------_________________________________ _ 
c 

, 
real *e function fla ( xd i st,ydist, zdist, xlambda2, ix, iy, iz) 
real oe xdist( 60), ydist( 60) ,zdist( 60), xlambda2 



fla_xlambda2 * (ydls t (ly+l )-ydist(iy-I))~(zdist(lz+I)_zdist(iz-l)) 

+ 1\4.0 * (xdist(ix)-xd i st\ix-l))) 
return 

"0' c c-----------------------------------------------------------------------------
C function fIb returns the value of b of function Fl. C------------------------------------ _________________ _______________________ _ , 

real * a functi on fl b( xd i s t , ydi s t, ~di s t, xlambda2, ix, iy, i z) 
real * a xdist( 60) , ydist( 60) , zdist( 60 J ,xlambda2 

c 
flb_ x lambda2 * (xdi st ( lx +l ) -xdist ( lx-I) ) . ( zdi st ( 1 z+l) -zdi st ( i z-l) ) I 

+ (4 . 0 * (ydist(iy) - ydist(iy-l))) 
return 
,od 

c------------------------------------------------------------------------------
C function fic returna the value of c of function Fl . 
C------------------------------------------------------------------------------, 

, 

real *a function flc(xdist , ydist,zdist,xlambda2,ix,iy,iz) 
real *a xd ist( 60) , ydi st( 60) ,zdist (60), xlambda2 

fle _ x lambda2 . (xd! st ( lx+l) - x d! s t ( i x-I) ) * (ydi s t ( iy+l ) -yd i st ( i y-l ) ) I 
+ ( 4. 0 * (zdist(iz)-zdist(iz-l))) 

return 
, od 

C--------------------------- -------------------------------------____________ _ 
C fUnction fl d returns the value of d o f f unction Fl. 
C-----------------------------------------------------------------------------
C 

real *a function fld(xd i st,ydist,zdist,xlambda2,ix,iy,lz) 
real. a xdist( 60) ,ydist( 60), zdist{ 60 J ,xhmbda2 

fld--xlambda2 * ( ( (ydist( iy+l )-ydist( iy-l) ) * ( zdist( i:o+l )-zdist( i z-l) ) . 
+ (1. O/(xd i st( ix +l )-xdi st( ix) )+1. O/( xdist( i x )-xd i st( ix-I) ) )/4.0) 
+ + ( xd ! st( lx +l )-xdi st( ix-I» * (zdis t (iz+1 )-zdist( it-I) ) * ( 1 .01 
+ (ydist( iy+l )-ydl st( lyJ J+l. O/( ydi stl iyl_ydist( iy_1) ) )/4 . 0+ 
+ I xdist( ix +1 )-xdist{ lx-I) ) * (ydist( iy+l )-ydist( iy-l) ) * (1.01 
+ (zd i st( 1z +1 )-zdist( it) )+1. O/( zdi st( iz) -zdist( i '<:- 1 ) ) )/4. 0) 

return 
, od , 

C---------------------------------- -------------------------__________________ _ 
C function fle returns the value of e of function Fl. C------------------------------------------------_____________________________ _ , 

, 

real * a func t ion fle(xdist,ydist,zdis t ,xlambda2.ix,iy,iz) 
real *a xdist( 60), ydis t (60), zdist( 60) • xlambda2 

fle-xlambda2 * (ydi st ( i y+l ) -ydi st ( i y- l ) ) * ( zdi st ( i Z+ 1) -zdi s t ( i z- l ) ) I 
+ ( 4 . O* (xdist( ix+l )-xdist( ix))) 

return 
, od 

C----------------------- -------------------------------_______________________ _ 
C function flf returns the value of f of function Fl . C------------------------------------_________________ ________________________ _ 
C 

c 
real *a function flf(xdist,ydist.zdist.xla mbda2,ix,iy,iz) 
real *a xdi st( 60) ,yd i st( 60) • zdis t (60), xlambda2 

flf - x lambda2 * (xdi st( ix+l )-xdist{ i x-I) ) * (zdist( i>.:+l )-zd i st( it- l »)1 
+ (4 . O*{ydist( iy+l )-ydist( iy )) ) 



c 
return 

'0' 
c-----------------------------------------------------------------------------
c runction flg returns the vilIlue of 9 of function Pl. 
c-----------------------------------------------------------------------------, 

reilll*S function flg(xdist,ydist,zdist,xlil1mbdill2,ix,iy,iz) 
reilll*S xdist (60) ,ydist( 60) ,zdist (60), xlillmbdill2 , 
flg _ xlillmbdill2 * (xdist(ix +l)-xdist(ix-l»*(ydist(iy+l)-ydist(iy-l»/ 

+ (4.0*(zdi$t(iHl)-zdist(iz») 
return 

'0' , 
c-----------------------------------------------------------------------------
C function f2il1 returns the vilIlue of ill of function F2. It cilliis function b. 
C-----------------------------------------------------------------------------, 

, 

, 

reilll*S function f2il1(xdist,ydist,zdi st,si ,n,p,ix,iy,iz,mun) 
reilll*S xdist( 60) ,ydist( 60), zdist( 60) 
r e illl *S si (35,30,15), n( 35,30,15), p( 35,30,15) ,mun( 35, 30,15), b 

f2il1_( (mun( ix-I, iy, iz )+ .. un( ix, iy, iz) }/2. 0) * 
+ b( sil ix-l, iy, iz )-si (ix, iy, iz) ) * (ydi st( iy+l ) - ydist( iy-l) ) * 
+ I zdist( i HI l-zdist( iz-l) )/1 4.0* ( xdist ( ix) -xdistl iX-I) ) ) 

return 

'0' 
C-----------------------------------------------------------------------------
C function f2b returns the vilIlue of b of funct ion F2. It cilllis function b. 
C-----------------------------------------------------------------------------, 
, 

, 

real*S 
rea1*S 
real *S 

function f2b(xdist,ydist,zdist,si,n,p,ix,iy,iz,mun) 
xdlst(60),ydistI60) ,zdist( 60) 

si I 3S, 30, 15) ,n( 35, 30,15), p( 35, 30, 15) ,munl 35,30,15), b 

f2b_1 I mun( ix, iy-l, iz ) +1IIun ( ix, iy, iz) )/2.0)' 
+ b( 51 (ix, iy-l, i z )-si (ix, iy, iz» . ( xd ist( ix+ l )-xdistl ix-I) ) * 
+ (zd1 st( iz+l ) - zdist( iz-l) )/( 4 . O' I ydist( iy )-ydist{ iy-l» ) 

return 

'0' 
C-----------------------------------------------------------------------------
C function f2c r e turns the vilIlue of c of function F2. It calls functions b. 
C-----------------------------------------------------------------------------, 

, 

real*S function f2c(xdist,ydist, zdist,si,n,p,i x,iy,iz,1IIun) 
real *S xdist(60),ydist{60 ) ,zdist(60) 
real *S si I 35,30,15) ,n( 35, 30, 15), p{ 35, 30,15) ,mun( 35,30,15), b 

f2e -( (muO( ix, iy, 1z-1 )+1IIun\ ix, iy, iz) )/2.0) * 
+ b(si(ix,iy,iz-l)-silix,iy,iz»*(xdlst\ix+l)-xdlst(ix-l»* 
+ (ydistl iy+l )-ydist( iy-l) )/1 4.0*(zdist( izJ-zdist( i .. -l J J) 

return 

'0' 
C-----------------------------------------------------------------------------
C function f2d returns the vll1ue of d of function F2. It clIlls function b. 
C-----------------------------------------------------------------------------
C 

, 

r e illl~S 

real·S 
relll*S 
relll"S 

function f2d( xdist, ydist, zdist, si ,n, p, i x, i y, iz, mun ,doping) 
xdist(60 ) ,ydist(60). ~di5t(60) ,b 

s1 (35,30,15), n{ 35,30,15), p( 35,30,15) ,mun( 35, 30,15) 
doping(35,30,IS) 



pI-I (.IIun( ix+l, iy, h ) +lIun ( ix, iy, iz) )/2 .0 ) · 
.. b( &i (i x, 1y, iz ) -&1 (h.I, iy, iz) ) * (ydi sti iy+l l-ydis t( 1y-l)) . 
+ /zdist(iz+l )-zdist(iz-l))/(4 . 0·Cxdist{ix +l)-xdist(lx))) 

p2_({~un(lx.iy+l.iz)+~un(ix.iy,iz)/2.0)· 
+ b(el(ix,iy,lz)-si(ix,iy+l,iz))*{xdist(ix+l)-xdlst(lx- lII' 
.. (",dist! 1'<+1 )-zd ist( h-l) 1/14.0 * Iydist( iy+l l-ydist( iy) ) 

pl_! (munt ix, iy, Iz+l I+mun\ lx, iy, iz) )/2.0, " 
+ b{si(ix,iy,izl-si(ix,iy,iz+l)l*(xdist(ix+l)-xdist(ix-lII . 
+ (ydis t ( iy+l l-ydist{ ly-I ) 1/14.0* (zdist( lz+1 l-zdist( iz) I) 

c 
p4_( (munt lx-I, iy, iz I .-mun t 1x, iy. iz) 1/2.0) . 

+ b ( 101 (ix, iy, iz ) - 101 (ilt-l, iy, i z) ) .. (ydist ( iy+l) -ydi stl ly-l) ' 
+ (zdist( 1z+1 )-zdist (1z-1) 1/14.0* ( "d ie t { ix J-xdist( 1x-1) ) ) 

p5.( (~un(ix.iy-1.iz ) +mun(ix.iy.iz))12.0)' 
+ b( si (i x, iy, h ) - sl (i x, iy-l. h) ) . ( xdl stl 1x+1 )-xd! st(ix-1)) . 
+ (zdist( iHl )-zdist( h-l) )/( 4.0* (ydi st( iy)-ydist( iy-1 ) ) 

c 
p6-( I ~un{ ix, iy, iz-l ) +mun( ix, iy, i~ ) )12.0) * 

+ bl si (ix, iy, iz )-&1 (i x, iy, iz-l) ) * I xdist ( ix+l )-xdist( 1x-1) ) * 
+ (ydis t ( 1y+ l )-ydi st(iy-l) )/14.0* (zdistl 1z )-zdistl lz-l) ) ) 

c 
f 2d_-Ipl+p2+p3+p4+p5+p6) 
return 

."' c 
c-----------------------------------------------------------------------------
C function f2e r etur ns the value o f e of function F2. It calls function b. 
C-----------------------------------------------------------------------------
C 

c 

c 

real *S functi on f2e(xdi&t,ydi&t,2di&t,si,n,p,ix,iy,i~,mun) 
real *S xd1st (60), ydist ( 6 0),~dist(60),b 
reaPS si (35,30 ,15 ) ,n( 35,30,15) .p( 35, 30,15) ,mun( 35,30,15) 

f2e-{ (mun( lx+l , iy, iz )+~un( ix, iy, i z) )12.0) * 
+ b( si (1 x+1, iy, i~ )-&1 (ix, iy, i~)) * (ydist( iy+l )-ydist( iy-l)) * 
+ (~dist( iz+l )- ~dist( i z-1) )/t 4,0 * ( xdi st( ix +l )-xdist ( ix»)) 

return 

."' 
C------------------------------------------------------------------------------
C function f2f returns tbe value of f o f function F2. It calls function b. 
C------------------------------------------------------------------------------
C 

c 

c 

real *S function f2f ( xdist,ydist,~dist,si,n,p,ix,iy,i~,~un) 
real*8 xdist(60) ,ydist(60 ) ,~dist(60) ,b 
real *8 si( 35, 30,15), n(35, 30,15) ,pi 35, 30,15) ,mun( 35,30,15) 

f2f_( (~un( ix, iy+l. iz "-~un( ix, iy, i z) )/2,0) · 
+ b(si(ix,iy+l,iz)-sl(ix,iy,iz) ) * (xd ls t (tx+l )-xdist(ix- l)) * 
+ (~dist( iz+l )-~dist( i~-l) )/( 4.0 * ' ydist( iy+l )-ydis t( iy) ) ) 

return 

."' 
C-----------------------------------------------------------------------------
C function f2g returns tb .. value of ,. of function F2, It calls function 'b . 

C-----------------------------------------------------------------------------
C 

c 

real *S function f2,. ( xdi&t,ydi st,~dist,si,n,p, ix,iy, iz,lIIun) 

real*8 xdist ( 60) ,ydist( 60). zdist( 60).b 
real*S si (35,30,15), n(35, 30.15) ,pt 35.30,15) ,munt 35,30,15) 

f2,._{(mun(ix,iy,iz+l)+lIIun(ix,iy,iz))/2.0)* 
+ b(si(ix,iy,iz+l)-si(ix,iy,iz)*(xdist(ix+l)-xdist(1x-1))* 



• 
, 

return 
,od 

(ydist(iy+l)-ydist{iy-l))/(4.0 * (zdiGt(i~+ 1 )-~dist(i~J)) 

C------------------------------------------------------------------------------
C function De returns the value of II of function F3. It calls function b. 
c-----------------------------------------------------------------------------, 

c 

c 

re!ll.e function f3al xdlst,ydist, zdi st, s1, n,p. i x. iy. i z ,mup) 
real ·a xd ist(60),ydist{60),zdist(60),b 
real *8 5 i (35,30,15) ,n( 35, 30,15) ,pI 35, 30, IS), mup( 35,30,15) 

f3a-! (mup( iX-I. iy. iz ) +IIIUP ( ix, iy. i z) )/2.0) ' 
+ b(si(ix,iy,iz)-si(ix-l,iy,iz))*(ydist(iy+l)-ydist(iy-l)) · 
+ (zd is t( iz +l J-zdist(iz-l)/(4 .0* (xdisl(i x ) - xdist (i x-I ))) 

r eturn ,,' 
c-----------------------------------------------------------------------------
C function f3b returns the v"lue of b of function r3. It c"ll functio n b. c----------------------------------------------------_-__ _____________________ _ , 

c 

c 

r e"I *8 f unction f 3b( xd ist,ydist,zdist,si,n,p,ix,iy,iz,MUp) 
reaP8 xdist( &0) ,ydist( 60) ,zdist ( 60), b 
real *8 si (35,30,15), n( 35,30,15), p( 35,30,15) ,mup( 35, 30,15) 

f3b .. ( (mup( ix, iy-l, iz )+mup ( ix, iy, iz) )/2.0 I * 
+ b(si(ix,iy,izl-si(ix,ly-l,izl I * ( xdist (i x+l )-xdis t ( ix- l » * 
+ I zdlstl h+l )-zdist( h-l) III 4.0 * (ydi at( iy)-ydist( iy-l») 

return 

"0' 
C-----------------------------------------------------------------------------
C function f3c r etu rns the value of c of function F3. It calls function b. 
c-----------------------------------------------------------------------------
C 

c 

real *8 function f3c(xdist,ydist,zdist,si,n,p,ix,iy,iz,mupl 
real *8 xd ist(60),ydist(601 ,zdist (60),b 
real *8 s i (35,30,15), n( 35, 30, 1 5), p ( 35,30,15), mup( 35,30,15) 

f3cM( (mup(l x,iy,lz-1 ) + .. uplix,iy,izl)/2.0) * 
+ bl ail ix, iy, iz )-si (ix, iy, iz-l) I * ( xd ist( ix+l )-xdist ( ix-I) ) * 
+ I ydistl iy+l )-ydistl i y-l ) )/( 4.0 * (zd istl iz )-zdistl iz-l I I ) 

re t urn 
'0' 

C-----------------------------------------------------------------------------
C function f3d returns the value of d of function F3. It calls function b. 
C-----------------------------------------------------------------------------
C 

c 

c 

c 

real *8 
real *8 
real *8 
real*8 

function f3d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup,doping) 
xd ist(60),ydist(601,zdist(60),b 
s1 (35,30,15), n (35,30,15), pI 35,30,15 I ,mup( 35,30,15) 
doping (35,30,lS1 

pl_( (mup( ix·j.J, iy. iz ) +mup(ix, iy, iz) )/2.0 I' 
+ b( 6i (Ix+l, iy, iz )-6 i (ix, iy, i z) ) * (ydist( iy+l )-ydist( iy-l) ) * 
+ (zdist( iz+l)-zdist( iz-l1 )/(4 .O*(xdi stl ix+l )-xdist{ ix») 

p2"(l mup (ix,iy+l,iz )+mup(ix,iy,iz»/2.01 * 
+ b( 5i (ix, iy+l, 1 z I-51 (i x, iy, iz) ) "(xdist( ix+ l )-xdist( ix-I»)" 
+ (zdi 5t! i HI )-zdi5t( iz-l) )/( 4 . O. (ydist( iy+l )-ydi st( iy) )) 

p3 .. ( (mup( ix, iy, iz +l )+ .. up( ix, iy, iz) )/2.0 I * 
... bl &i (ix, iy, i2+1 )-si (ix, iy, iz) ) . (xdi5t( i x+ll-xdi st( i x-I) ) . 
+ (ydi5t ( iy+l I-ydist( iy-l I )/! 4.0 * (zdist( iz+l )-zdistl i2)) 



, 

, 

p4.( (mup( ix-I, iV, iz J +mup( i>:, iy, iz) )/2.01 * 
+ b( si (ix-I, iy, iz )-5i (ix, iy, iz) I * I ydi H( iy+l )-ydlstl 1y-l) ) * 
+ I zdist (iz+l }-zdist( iz-1 11/14 . O*(xdist( ix )-xd1st( 1x-l) ) ) 

P~-( (lIIUp( ix, iy-l, ii: ) 1-III UP ( ix, iy, iz 1)/2 .0 J' 
+ bl si (ix, iy-1, iz ) - si (ix, iy, iz) ) * (xd is tl ix+l )-xdist ( ix- I) ) * 
+ I zdistl iz+l }-zdistl i z-l) )/( 4.0* (ydi st( iy)-ydistl iy_l) ) } 

p6-( (IIIUp( ix, iy, iz-l )+mup( ix, iy, iz) )/2 .0 ) · 
+ b(si(ix,iy,iz-l)-si(ix,iy,i2»)*(xdist(ix+l)-xdist(i x-l» * 
+ I ydistl iy+1 )-ydl stl iy-1) 1/1 4.0* (zdi stl h) -zdistl iz-l1 ) ) 

f3d_-(pl+p2 +p3+p4+p5 +p6 ) 
return .0' 

c-----------------------------------------------------------------------------
C function f3e returns the vblue of e of function F3. It cIIIIs function b. 
c-----------------------------------------------------------------------------, 

, 

relll*S function f3e(xdist,ydist,zdist,Si,n,p,ix,iy,iz,mup) 
relll - S xdistl 60) ,ydist( 60), zdiEt( 60) ,b 
relll - S si (35, 30,15), nl 35,30,15), pI 35,30,15) , .. up( 35, 30 ,IS) 

fJe_{ ( II'lU p( 1x+l, iy, i 2 )+mupl ix, iy, i2) )/2.0) * 
+ b( 5i I ix, iy, iz )-5i I ix+1, iV, iz) ) *{ydistl iy+1 )-ydist (iy-1») · 
+ (zdist( iul )-2dist( iz-l ) )/( 4. O*(xdist( Ix+l )-xdist( ix»)) 

return .0' 
C-----------------------------------------------------------------------------
C function f3f returns the viIIlue of f of function F3. 'It clilis function b. 
C----------------------------------------------------------------------------, 

, 

real *S function f3f(xdist,ydist,zdist,si,n,p,i x, iy,1z,mup) 
real*S xdist(60),ydist (60) ,zdist(60),b 
real *8 si I 35, 30, 15) ,n( 35, 30 ,IS) ,p( 35, 30 ,15) ,mupl 35, 30, 15) 

£3f_( I mup( ix, iy+1, iz ) ... mupl ix, iy, i z) )/2.0)' 
+ bl si ( i x, iy, iz )-51 (ix, iy+l, iz) 1 ' 1 xdist( 1x1-1 I-xdist( i x-l I 1* 
+ I zdist( i z +1 )-zdist( iz-l) )/1 4.0* (ydis t ( iy+l )-ydi5t( iy») ) 

return 
"0' 

C------------------------------------------------------------------------------
C function £3q returns the value of 9 of function n. It calls f unction b. 
C------------------------------------------------------------------------------, 

c , 

real *S function f3q(xdist,ydist,zdist,s1,n,p,ix,iy,iz,lIIupl 
real -S xdist(601,ydistI601,zdist {60) ,b 
real-S 51 (35,30,15), n( 35, 30, 15), pI 35,30,15) ,mup( 35,30,15) 

£3q-( (mup( ix, iy, iz+1 )+mup( ix, iy, iz) I/L 0 I ' 
+ b( 5i I i x , iV, i z )-s1 (ix, iy, iz+l1 ). (xdi stl ix+l )-xdist( lx-I) ). 
+ (ydist( iy+l l-ydist( iy-l ) 1/( 4.0 * (2distl i 2+1 )-2dis t (iz I) ) 

return .0' 
C-----------------------------------------------------------------------------
C subroutine soljacsi solves the jacobian for si. 
c-----------------------------------------------------------------------------, 

subroutine soljllcsi(nx,ny,nz,xdist,ydist,zdist,sl,n,p,doping,xlambdll2, 
+ mup,mun,rg,ersi) 



c 
c 

c 
C 
C 
C 
C 
C 

C 
124 

123 

~~&1.8 xdlst(60 ) ,ydist(60).~dist (60) 
real.a si (3~, 30 ,15) ,n( 35,30,15) ,pI 35, 30,15) ,mun( 35,30,15), mup( 35,)0,15) 
real*8 dopinq(JS,)O,15) 
r e lll - 8 rgI35,JO,15),ersi(3S,)O,lS) 
real*8 aparam,conres,conchn,resids (50) ,chnqs(SOt,xlambdaZ 
rcol *(1 W[lIsp! (35,30,15). wrksp2( 35,30,15) ,wri:sp3 (35,30,15) 
real * B wrksp4(J5.30,lS),a {JS,JO,l S),b{35,30 ,l S),c{ 35,30,lS) 
real . ! d( 35.30,15), e{ 35, 30, 15), t ( 35, 30, I S). gl 35, 30, 15) ,QI 35,30,15 ) 
rcal*8 fla,flb,flc,fld,fl e, flf,flg 
integer itused.ixn,iyn,izn,ifail 

nl .. nx 
n2 .. ny 
n3 .. nz 
nlm .. nx 
n2m .. ny 
itmalC .. 50 
itcoun .. 0 
ndie .. 1 
ixn_l 
iyn-2 
izn_2 
conres .. 1.0e~ 1 

conchn "1 . Oe-4 
!fail .. 0 
aparam-600.0 

open(unit_12.ftIe_'jacsi.dat' ,form_'formatted') 

do 121 iz_1,nz 
do 122 iy_1 , ny 

do 123 ix_ Lox 

tf( iz .eq .1.or . i z .eq.oz. or. iy.eq.l.or. iy.eq. ny .or. ix. eq .1. or 
+ . ix.eq.nx)go to 124 

a (ix,iy,iz ) '"' flc ( xdist,ydist.zdist,xlambda2,ix,iy.iz ) 
b(ix,iy.iz ) _ f1b ( xdist,yd ist.zdist. xlambda2 .ix,iy.iz) 
c(ix,iy,iz) _ f1a(xdist,ydist,zd is t,xlambda2,ix,iy,iz) 
d(ix,iy.iz) '"' fld(xdist,ydist.zdist,x1ambda2.ix,iy,lz)-( 

+ 0(ix,iy.iz)+p(ix,iy,iz)*le-6 

• 
• 
• • 

• • 
• 

e(ix,ty.tz) - fle( xdist,ydist,zdis t,xl ambda2.i x,iy,iz ) 
f(ix,iy,iz) _ flf(xdist,yd is t,zdls t,xlambda2,ix,ly,iz ) 
g(ix,iy.iz ) _ f l g(xdist,ydist,zdist,x1ambda2.ix,iy,iz) 
q ( ix, iy, it) '"' (( xdist ( i x+1 ) -xdist( i x-1 » * (ydist (iy+ l)­

ydist ( iy-l » *( zdist(iz+l)-zdist(tz-l» 
/8 .0 ) *( n (ix, iy,iz )-p( ix,iy,iz )­
doping(ix, iy,iz»-( n(ix,ty,iz )+p( 
ix, iy, i z) ) *&i (i x, iy, iz) *le-6 

write (12,80) a (ix ,iy. iz) .b(ix,iy,iz). 
c(ix,iy,tz),d(ix,iy,iz) , 

e (ix,iy,iz),f(ix,iy,iz ), 
g ( ix,iy, iz) ,q( i x, iy, iz ) 

go to 123 

a(ix,iy.iz)-O.O 
b(ix,iy,iz)_O.O 
c(ix.ly,iz)-O.O 
d(ix,iy,iz)-O.O 
e(i x,iy,iz )_O .O 
t ( ix,iy,iz )_O.O 
g(ix,iy,iz)_O.O 
q(ix,iy.iz)-si( i x,iy,izj 

continue 



122 

'" c 

, 

continue 
continue 

call dOlecf(nl.n2,n3,nlm,n2m,a,b,c,d, e ,f,9,Q,si,aparam,itmax, 
+ itcoun,itU5ed,ndir,ixn,iyn,izn,conres,conchn,resids,ch"96, 
+ wrkspl,wrksp2,wrksp3,wrksp4,lfa11) 

writ,,(6.~) ileaun,if"il 

80 for.llt(8e20.4) 
70 forlllat(e20.4) 

, , 
return 
'0' 

c-----------------------------------------------------------------------------
C subroutine soljacn solves the jacobian for n. 
c-----------------------------------------------------------------------------, 

, 

, 
, 

, 

subroutin e soljllcn{nx,ny,nz,xdist,ydist,zdist,si,n,p,dopinq.xlambda2, 
+ mup,mun,rg. e rn,dopdsj 

rea! *8 xdist(60),ydist(60 ) ,zdist(60) 
u,"l*8 51 (35.30,15) ,n( 35, 30,15), pllS. 30, 15 ) , lIIun( 35,30,15) ,mup( 35, 30,15) 
rebl*8 dopingI35,30,15) 
real*8 [g(35,30,15), .. [n(35,30,15) 
real*8 aparam, conres,conchn,res id s(50),chngs(50), xlambda 2 
real*8 wrk spl(35,30,15),wrksp2(35,30,15),wrksp3(35,30, 15 ) 
real *8 wrksp4( 35,30,15 )', al 35, 30, 15), b( 35,30, 1 5), c{35, 30,15) 
real *8 d( 35,30,15) ,e( 35, 30, 15), f( 35,30,15), g( 35,30,15) ,Q( 35,30,15) 
[eal*8 f2a,f2b,f2c,f2d,f2e,f2f,f2g 
integer itused,i xn, iyn,izn,ifail 

nl _ nx 
n2 _ ny 
n3 _ nz 
nlm _ nx 
n211 ... ny 
itllax ... 50 
itcoun ... ° 
ndir ... 1 
ixn_22 
iyn-13 
izn_4 
cOnres - 1.0e-2 
conchn _1 . OeO 
itai1 - 0 
aparalll_600.0 

open(unit_14,fl1e_'jacn.dat' ,form_'formatted') 

d o 121 iz_l,nz 
do 122 iy_l,ny 

do 123 ix_ l,nx 

if (iz . eQ.l . or. iz .eq.nz. Or. iy.eq.l. Or. iy.eq . ny. Or. h. eq. 1. 
.. or.ix.eq.nx)go to 124 

al i x, iy, iz) - f2clxdist, ydist, zdist, si, n, p, ix, iy , iz ,mun) 
bl ix, iy, 12) - f2bl xd i st, ydist, zdist, si, n, p, ix, iy, iZ,mun) 
cl ix, iy, iz) -f20111 xdist, ydist, zdist, si, n, p, ix, iy, iz ,lIIun ) 
dl ix, iy, i z) _ f2dl xdist ,ydist, zdi;t, si, n ,p, ix, iy, iz ,mun, 

.. doping)-rgOx,iy,iz)*1.0 
el i x, iy. i z) _ f2el xdist ,ydist, zdi st, si, n, p, ix, iy, iz ,mun) 
f ( ix, iy, iz) ... f2f( xdist, ydist, 2dist, si, n ,p, ix, iy, iz ,mun) 
gl ix, iy, i z) - f2g( xdist ,ydist, zdi st, si ,n, p, ix, iy, iz ,mUn) 
q( h, iy, h) - -n( ix, iy ,12 J . rg( ix, iy, iz) * 1. O+rg{ix, iy, iz) 

write(14,80) a( h,iy, iz) ,bl h,iy, iz) ,c( h,iy, iz), 



c 
c 
c 
c 

d(il!, iy,iz) ,e( ix, iy,h), i( ix, iy, ill), 
gl ix, iy. iz) ,ql ix, iy. h) 

go to 123 
124 (I.(ix,iy.izl-O.O 

g(ix,iy,ill)-O.O 
b(ix,iy,iz) _O.O 
f(ix,iy,iz)_O.O 
c(ix,iy.ill)_O.O 
e(ix,iy,iz)_O.O 
d(ix,iy,iz)-O.O 
q( ix,iy, iz )-nl ix,iy, iz) 

123 continue 
122 continue 
121 eontinue 
C 
C 

call d03ecf(nl.n2.n3.nlm.n2m,a.b,c.d, e. f,9,q.n,apa~a.,itmax, 

+ itcoun,itused,ndir,ixn,iyn,izn,conres,conchn,resids,chng5, 
+ wrkspl,wrksp2,wrkspJ,wrksp4,ital1) 

write(6,*) Itcoun,ifail 
do 125 1z_2,nz_l 

do 126 iy_2,ny_l 
do 121 1x_2,nx_l 

i f( n( ix, iy, iz) .1e .1 ,,-16 In( ix, iy. i z )- 1,,-16 
tf(n(ix,iy,iz) .qt.dopds/ l e16)n(ix,iy,iz )_dopds/le16 

127 continue 
126 continue 
125 continue 
60 fornlllt(8e 20.4) 
70 tor"!'It(e20." 

c 
c 

return 
' 0' 

C-----------------------------------------------------------------------------
C subrOl,ltin .. soljacp solves the jacobian for p . 
c-----------------------------------------------------------------------------
C 

c 

subroutine soljacp(nx,ny,nz,xdist,ydist,zdist.si,n.p,doping.xlambda2. 
+ ml,lp.ml,ln.rg.erp.ssd) 

real*S xdist (60).ydis t (60) ,zdist(60 ) 
r .. al*S sit l5. lO,15) .n( l5, lO.15) .p( 35. 30.15) .ml,ln( 35.l0, 15) ,ml,lp( 35,lO.15) 
real*S doping(l5,30.15) 
r ea1 *S rq(35.30.15 ) . .. rp(l5.l0.15) 
r .. aloS aparam,conres,eonehn,resids(50),chnqs(50) 
real *8 wrkspl (35 . lO.15) .wrksp2( 35.30.15) .... rksp3 (35 .30,15). xlalllbda2 
real*8 ... rksp4(35,30.15).a(35.30.15).b(35.30.15).e(35.l0.15) 
real*8 d( 35. 30 ,15). e( 35,30.15 J • f( 35.30.15) .q( 35,30,15), q(J5, 30 .15) 
real.8 f3a. flb. flc. f3d. f3 ... f3f. flg 
integ e r itused.lxn, lyn.lzn, ita!l 

open (uni toolS. f1 1 .. -' j acp. da t· ,form_' fo rmat ted' ) 
nl .. nx 
n2 _ ny 
I'll • nz 
n1,. _ nx 
n2m .. ny 
i tlllax _ SO 
i teOl,ln .. 0 
ndir .. 1 
ixn_6 
iyn_5 
izn .. ] 



, , 

, 

, , , , 

con res - 10.0e-2 
conchn _1. GeG 
Hail - (l 
aparam_600.0 

do 121 iz_l,nz 
do 122 iy .. l,ny 

do 123 ix_l,nx 

i f (lz.eq.l.or.iz. eq . nz.or.iy.eq . l.or.iy.eq . ny.or.l x. eq.1. 
+ or.ix .eq.nx)qo to 124 

• 

• 

a(ix ,iy,iz) 
b(i x, iy,iz) 
c(ix,i y,iz) 
d(ix,iy,iz) 

e(l x, ly,lz) 
f(i x ,iy,iz) 
q(i x, iy,iz) 
q(ix , iy,iz) 

----
----

f 3c(xdist,ydist,zdist,si ,n ,p ,ix,iy,iz,mup) 
f 3b(xd i st,ydist,zdist,si ,n, p,ix,iy,iz ,mup) 
f3a (xdlst,ydis t ,zdist,si,n,p,ix,iy,iz,mup) 
f3d(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup, 

doping)-rg(ix,iy,iz) · 1.0 
f 3e {xdlst,ydlst,zdlst,si,n,p,ix,iy,iz,mup) 
f3f(xdist,ydist,zdist,si,n,p,ix,iy,iz,mup) 
f3 g( xd ist,ydist,zdist,si,n,p,ix,iy,lz,mup) 
- pI ix, i y, iz) *rg( ix, iy, iz) "I. O+rg( I x, iy, iz) 

wri te ( 15, e O)!l ( ix, iy, i z) ,b( ix, i y, i z) ,c ( ix, iy, i z ) ,d (i x , iy , iz) 
, e I i x, iy, iz), f( ix, iy, iz) ,g( ix, iy, iz) ,q( ix, iy, 1z) 

go to 123 
124 a(tx,iy,iz)-O 

q(ix,iy,iz)_O 
b(ix,iy,iz)_O 
f (ix,i y, iz)_O 
c(ix,iy,iz)-O 
e(ix,iy,tz )-O 
d(ix,iy,iz) _ O 
q(ix,iy,iz)-p(ix,iy,iz ) 

123 continue 
122 continue 
121 cont inue , 

call d03ecf{nl,n2,n3,nlm,n2m,a,b,c,d,e,f,g,q,p,aparam,itma x, 
+ itcoun,itused,ndir, ixn,iyn,izn,conres,conchn,resids , chnqS, 
+ wrkspl,wrksp2,wrksp3,wrksp4,ifail) 

writeI6, ' ) itcoun,ih.il 
do 125 iz_2,nz_l 

do 126 iy-2,ny-l 
do 127 i x_2,nx_l 

i f ( pI ix, iy, i z) . le . 0 . 0) p( ix, iy, iz ) - le-16 
i f lp(i x, iy,iz) . gt . $sd/l(18)p(ix,iy,iz)_ssd/1e18 

127 continue 
126 continue 
125 continue 
80 format(8e20.4) 
90 fo r mat(e20.4) 

r e turn ,,' 


