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Abstract—Three-dimensional (3D) inductors u
ratio (10:1); thru-wafer via (TWV) te
complementary metal oxide semiconductor (CM
been designed, fabricated, and measured. Th
designed using 500 μm tall vias, with the number
from 1 to 20 in both wide and narrow-trace widt
Radio frequency characterization was studie
upon de-embedding techniques and the resul
open, short, thru de-embedding (OSTD) techn
measure all devices. The highest quality factor (
11.25 at 798 MHz for a 1-turn device with
frequency (fsr) of 4.4 GHz. The largest inducta
was 45 nH on a 20-turn, wide-trace device with
4.25 at 732 MHz. A 40% reduction in area
exploiting the TWV technology when comp
devices. This technology shows promising res
development and optimization. 
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I.  INTRODUCTION 
The interest and proliferation of radio

circuits in recent years has provided broad op
development of front-end RF modules, such
controlled oscillators (VCOs), low-noise am
and switching regulators needed to suppo
applications [1, 2], including multi-mode wir
[3]. These RF modules have their founda
discrete passive circuit components like the
(HF) inductor. In the last decade, integratio
inductors in silicon-based complementary
semiconductors (CMOS) has been realized a
due to the aggressive scaling in MOS devices, 
performance above 1 GHz [4, 5]. This movem
benefit that does not rely on off-chip componen

As devices scale, designers are challenged
smaller and more efficient RF building
maintaining or improving circuit performanc
and robustness [2]. These three design requi
influence the selection of passive compone
building blocks and thus have fueled the quest
integrated inductor.  

While the inductive coil has been aroun
years, its wide-spread use in modern CMOS 
limited by its relatively large size (when co
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In order to achieve a reasonable 
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an extremely large footprint, on
Unfortunately, increasing the induc
manufacturing cost and produces 
thus reducing its fundamental p
includes a poor quality factor (Q), 
frequency (fsr), and a low induct
information in hand, circuit designe
and further experiment with new de
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for an alternative inductor design, a 
wafer vias (TWVs), also known
(TSVs). An example layout/cross-se
image of the 3D inductor was 
simulated, with Ansoft’s HFSS softw

Figure 1.  HFSS 3D Induc

II. INDUCTOR

A. The Inductive Phenomena 
An A/C current flowing in a str

wound wire (solenoid), or a CMO
inductor gives rise to the magnetic 
in units of A/m, and is related to th
measured in units of Tesla, as seen 
permeability μ is absolute magnetic 
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The total magnetic flux is equal to the
magnetic flux density over an area of a surface
the field lines. In the special case of a planar 
be simplified where A is the cross-sectio
intersecting surface and θ is the angle between
the magnetic field lines that extend normal
current. In other words 

 

Flux linkage (λ) represents the total magn
through a surface S of a single loop of curre
This is covered in (3), where N is the numb
example, if two N-turn loops are tightly wou
magnetic flux generated from each loop is sha
loops. As such, the total magnetic flux linkag
the square of the number of loops N times the 
one loop of wire as shown below. The quant
can be determined by the ratio of the flux
current that creates the magnetic flux, as show
words, inductance is primarily a function of ge

 

                         

B. Mutual- and Self-Inductance 
Using the method presented in the last sect

inductance make up the total inductance: m
inductance. Mutual-inductance is a result o
effect occurring between two closely spaced
elements, or wires [7] in series or parallel. A
depends on the amount of flux linkages interac
two elements. Illustrated in Fig. 2 are two 3-lo
with interacting flux linkages.  Coil A is 
current IA, and as such is creating the flux den
while coil B is not being driven, but rather rece

 

 

 

Figure 2.  Mutual-Inductance of Two C

C. Electric/Magnetic Fields 
The planar square spiral provides the best 

electromagnetic fields exhibited and the utili
model. As illustrated in Fig. 3, one magnetic a
fields are produced when an AC voltage is app
The effects of the electric fields are modeled 
while magnetic fields are modeled by indu
shows the lumped circuit-equivalent planar 
model.   
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Figure 3.  Electric and Magnetic Fields
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III. 3D INDUCTOR FABRICATI

A. Fabrication 
Fig. 5 illustrates the first generation of 3D

turn inductor where a) shows the via mask, b
metal mask with ground-signal-ground (GSG)
guard ring, and c) shows the bottom metal m
ring.  Fig. 5d depicts all masks overlaid to
alignment. The Fig. 5e micrograph shows the t
fabricated device. An optical resolution 
identified due to the dry-film photoresist
subsequent turns to become shorted. In Fig. 
device clearly shows this.  As such, a line
design rule of 30 μm minimum became necess

 

 

 
 

 

 

 

 

 

Figure 5.  1st Generation 3D Inductor Masks and Fa
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Figure 6.  2nd Generation 3D Inductor Masks and Fa
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IV. MEASUREMEN

A. Equipment Setup/Calibration/De
The 3D inductors were charac

vector network analyzer (VNA) in 
Cascade™ Microtech Summit mic
µm pitch ground-signal-ground Inf
PC, and a non-conductive auxiliary
bottom metal traces during measurem

The short, open, load, and thru 
[10, 11] was used to remove parasiti
and the probe tips with a rea
measurement below 20 GHz. Me
obtained by manually placing the p
on the probe pads. 

V. MEASURED 3D INDUC

The highest quality factor observ
frequency (fsr) on the measured dev
inductors and measured Qmax value
(NT). Increasing the number of 
parasitic components and decreased
shown in Fig. 7.  

 

Figure 7.  Qmax v
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The basic 1-turn 3D inductor measures inductance values of 
1 nH (WT) and 1.5 nH (NT).  As expected, inductance 
increases with the number of turns due to the increase in flux 
linkages. The measured inductance at the characteristic 
frequency f0, versus the number of turns between the NT and 
WT devices, converges at N=8 as seen in Fig. 9.   

 

 
 

Figure 9.  L vs. NTurns 

The WT 1-turn device measures a |Z| of 4.8 Ω, while the 
20-turn device measures 20Ω at f0. The resistance increases 
non-linearly with an overall average increase of 2 Ω per-turn. 
The WT devices overall measured lower in resistance than the 
NT devices. The 1-turn WT inductor measured 54% less 
resistance than the 1-turn NT inductor. Fig. 10 illustrates the 
impedance growth with increasing N values.    
 

Figure 10.  |Z| at fo vs. NTurns 

The phase angle, also measured at fo, measured higher on 
the WT devices, in the range of 84º to 76º for N = 1 and N = 20, 
respectively.  The NT devices measured angles in the range of 
82º to 66º for N = 1 and N = 10, respectively. Since phase 
angles at 90º cause resonance, a lower phase angle provides 
increased margin that ensures reliable performance.     

VI. CONCLUSION AND FUTURE WORK 
The 3D TWV inductor architecture provides a 40% smaller 

device footprint when compared to an equivalent N-turn planer 
device. The 3D 1-turn wide inductor achieved a maximum WT 
device de-embedded Q of 11.25 and fsr = 4.4 GHz.  While the 
1-turn WT device measured ~1 nH and increased non-linearly 
to ~45 nH up to 20-turns. Convergence between WT and NT 
devices occurs at N = 8 turns, with the NT device providing 
higher inductance below N = 8 and the WT device providing 
higher inductance above N = 8.  The 1-turn WT device series 
resistance measured 4.8 Ω and increases to 20 Ω for N = 20.  

However, each additional turn added drops off to 1.02 Ω per 
turn above N = 15.    

As with the planar inductor, the 3D TWV inductor suffers 
similarly from capacitive coupling to the substrate.  As such, 
future work on this architecture should be focused on 
optimization of the via height (wafer thickness), the via pitch, 
the inductor radius, and the line-to-width space ratio. The 
architecture would also benefit from devising a scheme to 
either remove or replace the silicon substrate within the core of 
the inductor.   
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