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I. Introduction 

U.S. Patent 9,632,727 (the “’727 patent”) should never have issued.  For 

example, claim 1 generally recites solid-state storage drive with a controller and an 

indexer that (i) assign logical addresses to physical addresses; and (ii) removes 

logical-to-physical assignments in response to a message indicating that a logical 

address is erased.  In the related litigations the Patent Owner, Unification 

Technologies LLC (“UTL”) generally asserts the claims encompass receiving a 

message indicating that data in storage need not be preserved because it has been 

erased from a user’s perspective, e.g., by a computer attached to storage.  See § VI, 

infra.  A person of ordinary skill in the art (“POSITA”) would have known of these 

concepts long before the alleged effective filing date in 2006.   

For example, erase commands specifying logical addresses were part of the 

Advance Technology Attachment (“ATA”) industry standard by 2002.  Ex. 1005, 

§ 8.1.  Additionally, in 1995, Ban patented updating logical-to-physical address 

mappings when data is deleted.  See Ex. 1035, 5:61-65; Ex. 1010, § 2.2 (Ban 

patented the Flash Translation Layer (“FTL”), to perform “block-to-sector 

mapping” within flash memory, which was adopted as an industry standard); Ex. 

1013, 3 (UTL accusing FTL of infringing mapping and storing elements).   

With this background knowledge, a POSITA would have found the claims 

obvious.  The primary references Bennett (Ex. 1002) and Suda (Ex. 1003) provide 
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concrete examples of the claimed technology.  For example, Bennett discloses 

responding to erase commands, that specify logical addresses, by storing a flag in a 

logical-to-physical index mapping to indicate that the data (i) is erased or (ii) is 

“logically erased” so that an actual erase can take place at a later time.  Ex. 1002, 

5:60-61, 20:20-27, 20:45-47.  Indeed, Bennett teaches that logically erasing data is 

“common” and can be performed using a system’s “standard logical erase 

method.”  Id., 5:57-61, 6:18-20.  Suda similarly teaches responding to erase 

commands that specify logical addresses by marking those addresses as in a “virtual 

erased” state, which is similar to Bennett’s logically erased state.  Ex. 1003, 5:19-

23, 5:38-46, 7:11-19. Suda also teaches maintaining and updating a logical-to-

physical address mapping table. Id., 3:13-15, Figs. 1, 7. 

The Board should invalidate the challenged claims. 

II. Petitioners Meet Standing and Eligibility Requirements for Inter Partes 
Review. 

Petitioners certify under 37 C.F.R. § 42.104(a) that the ’727 patent “is 

available for inter partes review and that the Petitioners are not barred or estopped 

from requesting an inter partes review challenging the patent claims on the grounds 

identified in the petition.”  UTL sued Petitioners less than one year ago on June 5, 

2020.  Exs. 1012, 1016. 

III. Prosecution History of the ’727 Patent 

The ’727 patent application was filed on June 19, 2014.  Ex. 1001, cover.  The 
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Examiner rejected the claims on various grounds, but did not cite the references 

relied upon herein.  Id., pp. 1-2 (listing cited references); Ex. 1021, 273-84.  To 

overcome the rejections, claim 31 (issued claim 1) was amended to recite that the 

indexer is “comprised within the solid-state storage controller” and the message is 

“received from a host operating system.”  Ex. 1021, 316.    

IV. Background 

Flash memory is a form of solid-state non-volatile computer memory.  Flash 

memory is organized in erasable units called “blocks,” which are made up of smaller 

“pages.”  Ex. 1004 (“Baker”), ¶ 63.  Unlike traditional platter hard drives, flash 

memory cannot be directly overwritten—a block must be erased before written to 

again.  Id., ¶ 73.  Erase commands for flash memory were well known and 

standardized before the earliest provisional for the ’727 patent.  Ex. 1005, §§ 6.16, 

8.1. 

Flash memory uses an FTL to map logical addresses to physical addresses. 

Baker, ¶ 80.  A “logical address” is generated by a user’s operating system; a 

“physical address” is the actual storage location on flash memory.  Id.  The FTL 

allows computer systems to operate and address data in a logical address space (e.g., 

logical address 0x0000 through 0xFFFF) without concern for where a solid-state 

storage device physically saves the data (e.g., in which particular block/page).  Id., 

¶ 83.   
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V. Summary of the ’727 Patent 

The ’727 patent acknowledges that erase commands for file systems were 

known.  See, e.g., Ex. 1001, 1:33-35 (“In many file systems, an erase command 

deletes a directory entry in the file system while leaving the data in place in the 

storage device containing the data.”).   

Similarly, erasing data by overwriting with zeros, ones, or other null 

characters was also known.  Ex. 1001, 1:37-39.  The patent alleges, however, that 

these erase methods were “inefficient” because “valuable bandwidth is used while 

transmitting the data [that] is being overwritten” and “space in the storage device is 

taken up by the data used to overwrite invalid data.”  Id., 1:39-42.            

A. Effective Filing Date and Date of Invention 

The ’727 patent claims priority to provisional application no. 60/873111, filed 

December 6, 2006.  Ex. 1001, cover. Solely for purposes of this IPR, Petitioners 

assume, but do not concede, an effective filing date of December 6, 2006, for the 

’727 patent. Pre-AIA 35 U.S.C. §§ 102 and 103 apply. 

B. Level of Ordinary Skill in the Art 

A POSITA as of December 2006 would have a Bachelor of Science degree in 

computer science or electrical engineering and at least two years of experience in 

the design, development, implementation, or management of solid-state memory 

devices.  Baker, ¶ 56.  The references cited in this Petition, the state of the art, and 

the experience of Dr. Jacob Baker as described in his expert declaration (Ex. 1004) 
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reflect this level of skill in the art.  In this Petition, reference to a POSITA refers to 

a person with these or similar qualifications. 

A POSITA would have known, as background information: how flash 

memory erases data, how flash memory programs or writes data, how memory is 

used in a cache hierarchy, relative speeds of flash memory compared to other 

memory, how garbage collection is used with flash memory, how to use wear 

leveling to combat endurance limits of flash memory, how the FTL works, and 

industry standards affecting flash memory including the ATA standard.  Baker, ¶ 61. 

VI. Claim Construction 

The Board construes claims under the same construction standard as civil 

actions in federal district court.  The District Court for the related litigations has not 

yet construed the claim terms.  Ex. 1016.   

The parties’ proposed constructions from the related litigations are set forth 

below.  Exs. 1032-1033.   

Claim Term Claim 
Nos. 

Petitioners UTL 

“indexer” 1-4 Indefinite under 
112(f) for lack 
of structure 
and/or algorithm 

Not indefinite and no 
construction is needed 
in light of the 
surrounding claim 
language. 

“empty-block directive 
command” 

12, 15 a command to 
empty data from 
a block 

a command that 
indicates that certain 
blocks contain data 
that does not need to 
be preserved 
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Claim Term Claim 
Nos. 

Petitioners UTL 

garbage collector 5 Plain and 
ordinary 
meaning 

hardware and/or 
software for 
recovering space for a 
system that does not 
support update-in-
place of data in the 
storage medium 

storage client 12 Plain and 
ordinary 
meaning 

a computing system 
capable of being 
coupled to the non-
volatile storage 
medium 

persistent data 12 Plain and 
ordinary 
meaning 

data that is retained in 
the absence of power, 
such as data stored in 
a non-volatile storage 
medium like NAND 
flash memory 

host operating system 1 Plain and 
ordinary 
meaning 

operating system of 
the computing system 
that is capable of 
being coupled to the 
non-volatile storage 
medium 

the identified logical 
address is erased 

1 Plain and 
ordinary 
meaning, where 
the plain and 
ordinary 
meaning is that 
the identified 
logical address 
is erased, not the 
data associated 
with the 
identified logical 
address is erased 

the data identified by 
the logical address 
does not need to be 
preserved 

logical-to-physical 12 Indefinite under Not indefinite and not 
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Claim Term Claim 
Nos. 

Petitioners UTL 

translation layer 112(f) for lack 
of structure 
and/or algorithm 

subject to 112(f). 

storage processor is 
configured to … update 
the logical-to-physical 
translation layer to 
indicate that data stored 
in physical block 
addresses corresponding 
to the received logical 
block addresses do not 
need to be preserved, 
and store persistent data 
on the flash memory 
device, the persistent 
data indicating that the 
data corresponding to 
the received logical 
block addresses is 
deleted at the storage 
client. 

12 Indefinite under 
112(f) for lack 
of structure 
and/or algorithm 

Not indefinite and not 
subject to 112(f). 

 
These construction disputes do not affect the outcome of this Petition with 

respect to any claim.  For the terms that Petitioners allege are indefinite, for the 

purposes of this Petition, Petitioners use UTL’s proposed constructions and have 

addressed them in the claim analysis below. The Board and Federal Circuit have 

approved of this procedure in several matters. See, e.g., Spherix Inc. v. Matal, 703 

F. App’x 982, 983 (Fed. Cir. 2017) (approving petitioner’s proposal of patent 

owner’s claim interpretations); Target Corp. v. Proxicom Wireless, LLC, IPR2020-

00904, Paper 11 at 12 (P.T.A.B. Nov. 10, 2020) (“Petitioner’s alternative pleading 
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before a district court is common practice, especially where it concerns issues 

outside the scope of inter partes review.”); Samsung Elecs. Am., Inc. v. Prisua Eng’g 

Corp., 948 F.3d 1342, 1355 (Fed. Cir. 2020) (indefinite claims may also be found 

invalid as anticipated or obvious); Intel Corp. v. Alacritech, Inc., IPR2017-01391, 

Paper 8 at 7 (P.T.A.B. Nov. 28, 2017) (instituting trial even where petitioner argued 

claim was indefinite); Vibrant Media v. Gen. Elec. Co., No. IPR2013-00172, Paper 

50, 10 (P.T.A.B. July 28, 2014) (“an indefiniteness determination in this proceeding 

would not have prevented us from deciding whether the claims would have been 

obvious over the cited prior art.”). 

In infringement contentions, UTL provides examples that allegedly infringe 

certain claim elements.  Ex. 1013.  UTL contends that “the indexer” in claim 1 

includes “circuitry, software, and/or firmware configured to assign LBAs of the 

logical address space to physical addresses on the NAND flash memory” and 

contains “a map or index of LBAs with their corresponding physical addresses.  Id., 

3.  Although not offering a construction of “index entries,” in claim 2, UTL 

contends, “Logical block addresses and physical addresses are both forms of index 

entries.”  Id.  Although not offering a construction of “index metadata” in claim 3, 

UTL contends, “Logical block addresses and physical addresses are both forms of 

index metadata.”  Id., 4.  Although not offering an affirmative construction of 

“logical-to-physical translation layer,” in claim 12, UTL contends, “a logical-to-
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physical translation layer [is] often referred to as the FTL of the NAND flash 

memory.  The FTL is a structure/set of functions for mapping LBAs to Physical 

Blocks. … [T]ables are widely used in order to map sectors and pages from logical 

to physical (Flash Translation Layer or FTL).”  Ex. 1013, 6.   

VII. Precise Relief Requested 

A. Proposed Grounds 

a) Ground 1 

Claims 1-6 and 12-16 are invalid under 35 U.S.C. § 103 over Bennett (Ex. 

1002) in view of a POSITA’s knowledge.  The Federal Circuit has affirmed prior 

obviousness determinations where the claims were found obvious over prior art “in 

light of the general knowledge” of a POSITA. Koninklijke Philips N.V. v. Google 

LLC, 948 F.3d 1330, 1337-38 (Fed. Cir. 2020). In Philips, the Federal Circuit agreed 

that expert testimony and other references corroborated that “pipelining” in the 

challenged claims was part of the “general knowledge” of a POSITA. Id., 1338. 

Although the asserted prior art reference did not expressly teach the “pipelining” 

claim limitations, a POSITA “would have known about pipelining” and would have 

“been motivated to combine” this knowledge with the reference.  Id., 1338.  As in 

Philips, the challenged claims here are obvious over Bennett in light of the general 

knowledge of a POSITA. 

b) Ground 2 

Claims 1-3, 5-6, and 12-16 are invalid under 35 U.S.C. § 103 over Suda (Ex. 
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1003) in view of a POSITA’s knowledge. 

c) Ground 3 

Claims 4 and 13 are invalid under 35 U.S.C. § 103 over Suda in view of 

Bennett and a POSTIA’s knowledge.  

B. Qualifying Prior Art 

Bennett and Suda are prior art to the ’727 patent. Petitioners are unaware of 

any assertion that the ’727 patent is entitled to an invention date earlier than the 

assumed effective filing date. Bennett (filed November 14, 2005) is § 102(e) prior 

art and Suda (filed December 28, 2004; published March 16, 2006) is § 102(a) and 

(e) prior art. Ex. 1002, cover; Ex. 1003, cover.   

C.  The Proposed Grounds Are Not Cumulative or Redundant 

The grounds for trial presented in this Petition are not cumulative to issues 

already examined during prosecution.  The references raised in this proceeding were 

not cited during prosecution.  Furthermore, according to the applicant, the art of 

record during prosecution did not show “an indexer, comprised within the solid-

state storage controller,” because the “FAT table … is stored by the host.”  Ex. 1021, 

321.  The Examiner found this argument persuasive.  Id., 333.  But, as shown herein, 

references such as Bennett and Suda teach this element along with all of the other 

elements of the claims.  
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VIII. The Prior Art 

A. Summary of Bennett 

Like the ’727 patent, Bennett recognizes that flash memory erase operations 

take a (relatively) long time.  Compare Ex. 1001, 41:35-36 (erasing flash memory 

“is a lengthy process”) with Ex. 1002, 3:5-8 (“In flash memory systems, erase 

operation may take as much as an order of magnitude longer”).  Bennett addresses 

lengthy erase times by treating an erase command differently for “specified sectors 

not forming [a] complete block.”  Id., 6:13-20.  If the erase command specifies a 

complete block, the block is erased.  Id. If the command specifies less than a 

complete block, the sector would be “logically erased” by “the system’s standard, 

logical erase method.”  Id.   

Bennett recognizes that “logical erasing” was not inventive and “it was 

common” for advanced memory systems to erase data logically, with the actual 

erasure taking place at a later time.  Id., 3:26-32.  For a logical erasure, the memory 

system will write a specific “data pattern to the memory portion, set a flag, or 

otherwise designate it as erased.”  Id., 3:36-41.  The logically erased “portion can 

then be physically erased when convenient, for example in a background process” 

such as a garbage collection process.  Id., 3:39-41; compare Ex. 1001, 51:33-35 

(“The data may be later recovered in a storage recovery operation, garbage 

collection operation, etc.”).     
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Bennett “keeps track of the mapping between logical groups of sectors and 

their corresponding metablocks” with a Group Address Table (“GAT”).  Ex. 1002, 

10:19-21, 10:65-11:8 (GAT provides a “list of metablock addresses for all logical 

groups of host data in the memory system”).  Bennett explains that typically, “the 

host system addresses data in units of logical sectors where, for example, each sector 

may contain 512 bytes of data.”  Id., 7:22-24.  Bennett further explains that the 

memory storage “is organized into meta blocks, where each metablock is a group of 

physical sectors S0, … SN-1 that are erasable together.” See id., 7:14-20, Figs. 3A(i)-

3A(ii); Baker, ¶ 99. The GAT is stored in non-volatile flash memory as highlighted 

in Bennett’s Fig. 6 below: 
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Id., Fig. 6; see also id., 10:16-26.  By storing address tables in non-volatile memory, 

Bennett’s system can reconstruct volatile records, such as “when the system is 

initialized after power-up.”  Id., 10:47-49. 

The GAT is recorded as an index of sectors: 

 
Ex. 1002, 11:4-5, Fig. 8B.  Each GAT sector includes two components: “a set of 

GAT entries for the metablock address of each logical group within a range, and a 

GAT sector index.”  Id., 11:13-14.  The GAT sector index “contains information for 

locating all valid GAT sectors within the GAT block.”  Id., 11:17-18. 

Bennett uses flags for marking sector headers as “erased” or “logically 

erased.”  Id., 20:20-61 (“Marking Sectors as Erased”).  For an actual “erase,” 

Bennett’s system marks “sector headers with the ‘erased’ flag in addition to writing 
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FFs or 00s” to the non-volatile memory. Id., 20:25-27.  “Writing” FFs or 00s to 

physical memory causes the erasure of flash memory.  Baker, ¶ 73.  Alternatively, 

a flag can mark locations as “logically” erased.  Ex. 1002, 20:45-47.  Unlike the 

“erased” blocks, logically erased blocks “will not be changed” in the underlying 

physical memory, but any read attempts will result in the return of “FFs or 00s as if 

the sectors were erased.”  Id., 20:47-50, 4:50-54 (“an erased data pattern can be sent 

to the host if it reads a sector from the erased logical grouping”). 

B. Summary of Suda 

Suda Fig. 1 shows a memory device 1 including a controller 11 and flash 

memory 14.  The controller manages “data erasure,” a logical and physical address 

table 13a, and an erasure area pointer storage area 13b.  Ex. 1003, 3:13-15, 5:19-23, 

Fig. 1.  The logical and physical address table 13a maps logical addresses to physical 

addresses of physical storage locations within the flash memory.  Id., 3:43-55.   
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Id., Fig. 1. 
 

Like the ’727 patent, Suda recognizes that “the time required for data erasure 

is long.” Ex. 1003, 1:19-23, 4:60-67.  Suda avoids the lengthy physical erasure 

process by writing “erasure area pointers” that indicate data ranges to treat as in a 

“virtual erased” state.  Id., 5:9-46.  Suda describes this virtual erasure process where, 

upon receiving an erase command that designates a logical address, start and end 

erasure area pointers will collectively designate a range of addresses “to be erased.” 

Id., 5:19-27, 5:36-53, 8:66-9:3, Fig. 8; see Figs. 3-5 (reproduced below, showing 

examples).   
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Id., Figs. 3, 4, 5. 
 

Virtually erased data may remain stored in memory.  Fig. 7 (annotated below) 

shows that data remains in pages 0-31 despite being marked as virtually erased.  

Reading data in a virtually erased address range will return “initial-value” (empty) 

data rather than stored data.  Ex. 1003, 9:53-62.  The system will physically erase a 

block once it fills up with virtually erased data, returning the block to an unused 

state.  Id., 5:54-6:3, 5:33-41.  When erasing the block, the corresponding logical and 

physical address entry is removed.  Id., 5:54-67, 7:64-8:2. 
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Id., Fig. 7 (annotated). 
 

The erasure area pointers are stored both in volatile RAM (e.g., id., Fig. 1) 

and in non-volatile (persistent) flash memory to preserve the information through 

power-off events.  Ex. 1003, 8:6-16.  The flash memory preserves the address 

information when the memory card is powered off so that RAM can load and cache 

the address information after power-on.  Id., 8:12-16.    

IX. Ground 1: Obvious Over Bennett and POSITA Knowledge 

A. Claim 1 

a) Element 1[a]1 

Bennett is titled “Methods For The Management Of Erase Operations In Non-

 
1 See attached Claim Listing. 
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Volatile Memory.”  Ex. 1002, Title.  Bennett discloses a host and memory system.  

See Ex. 1002, Fig. 2. 

 
Id., Fig. 2.  Bennett discloses “Flash Memory 200.” Ex. 1002, Fig. 2.  “[F]lash 

memory is non-volatile” solid state memory.  Id., 1:29-30, 2:38-40 (“There are many 

commercially successful non-volatile solid-state memory devices being used today. 

These memory devices may be flash EEPROM or may employ other types of 

nonvolatile memory cells.”).  Thus, a POSITA would have understood that Bennett 

teaches this element.  Baker, ¶¶ 117-18.   

b) Element 1[b] 

Bennett teaches a solid-state storage medium.  For example, Bennett’s Fig. 2 
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(copied above in the prior element) discloses a “memory system 20” that includes a 

“flash memory 200.”  Ex. 1002, Fig. 2.  Bennett also teaches that the “memory 

system is typically in the form of a memory card or an embedded memory system.”  

Id., 6:60-62.  A POSITA would understand that a “memory card” is a solid-state 

storage medium.  Baker, ¶ 119; see also Ex. 1002, 1:23-26 (“Solid-state memory 

capable of nonvolatile storage of charge, particularly in the form of EEPROM and 

flash EEPROM packaged as a small form factor card, has recently become the 

storage of choice), Fig. 6 (depicting Flash Memory 200). 

c) Element 1[c] 

Bennett teaches a “memory system 20 [that] includes a memory 200 whose 

operations are controlled by a controller 100.”  Ex. 1002, 6:62-63.  The “controller 

100 includes an interface 110” and the interface “has one component interfacing the 

controller to a host and another component interfacing to the memory 200.”  Id., 

6:66-7:4.  A POSITA would understand that Bennett’s controller is a “solid-state 

controller” as claimed because it implements storage operations on the flash 

memory 200.  Baker, ¶ 120.  For example, the controller includes a “memory-side 

memory manager” (id., Fig. 2) which “contains a number of software modules for 

managing erase, read and write operations of the metablocks2 … [and] maintains 

 
2 Bennett’s “FIG. 2 illustrates the memory being organized into physical groups of 
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system control and directory data associated with its operations among the flash 

memory 200 and the controller RAM 130.”  Id., 7:36-41.  Bennett also teaches 

storing data pertaining to a computer system’s logical address space at respective 

physical address of the flash memory.  Id., 7:29-36, Figs. 3A-3B.   Thus, a POSITA 

would have understood that Bennett teaches this element.  Baker, ¶¶ 120-22.    

d) Element 1[d] 

A POSITA would understand that Bennett teaches an indexer as claimed 

under UTL’s interpretation (see § VI, supra).  For example, UTL appears to interpret 

this term to mean “circuitry, software, and/or firmware configured to assign LBAs3 

of the logical address space to physical addresses on the NAND flash memory” and 

contain “a map or index of LBAs with their corresponding physical addresses.” See 

§ VI, supra.  While Bennett does not use the term “indexer”, a POSITA would 

understand that Bennett teaches the same thing.    

For example, Bennett teaches use of a “memory-side memory manager” 

comprised within the storage controller.  Ex. 1002, Fig. 2.  The memory-side 

memory manager includes components such as a “logical to physical address 

translation” module.  Id. This module “is responsible for relating a host’s logical 

 
sectors (or metablocks) and managed by a memory manager of the controller, 

according to a preferred embodiment of the invention.”  Ex. 1002, 5:15-18.     

3 “Logical Block Addresses.” 
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address to a corresponding physical address in flash memory.”  Ex. 1002, 10:37-39.  

Bennett further teaches storing an index mapping of logical-to-physical addresses 

in a GAT stored in flash memory.  Id., Figs. 6, 8B; Baker, ¶ 123.  POSITA would 

have understood this logical to physical address translation module to include 

“circuitry, software, and/or firmware”.  Id.  A POSITA would understand that 

physical addresses are used to identify blocks that stored data on the flash memory.  

Id. Thus, a POSITA would have understood that Bennett teaches this element.  

Baker, ¶¶ 123-24.        

e) Element 1[e] 

A POSITA would understand that Bennett teaches this claim element.  First: 

Bennett teaches the claimed “message received from a host operating system … 

indicating that the logical address is erased” in the form of erase commands. Ex. 

1002, 5:56-58 (“an erase command, originating either from the host or with the 

memory system itself”).  Bennett’s erase command is a message that includes 

reference to a logical sector.  See id., 17:52-56 (an erase command “specifies the 

(logical) sectors to be erased”).  A “logical sector” refers to a logical address.  See 

Ex. 1002, 7:22-24 (“[t]ypically, the host system addresses data in units of logical 

sectors where, for example, each sector may contain 512 bytes of data”); Baker, ¶ 

126. As depicted in Bennett’s Fig. 2, the erase command is received from the host 

through the controller’s memory-side memory manager.   
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Ex. 1002, Fig. 2. 

Bennett’s erase command indicates that a logical address is erased under 

UTL’s proposed construction of “the identified logical address is erased” as “the 

data identified by the logical address does not need to be preserved”.  See § VI, 

supra.  For example, Bennett’s Fig. 10 illustrates the process flow for erase 

commands: 
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Ex. 1002, Fig. 10.  As shown, the memory controller (at step 820) separates erase 

commands for “partial groups” and “full groups.”  Id.  Full groups “can then be 

physically erased” (step 850) and the partial groups “are logically erased” (step 860).  

Id., Fig. 10, 4:12-21. The “logically erased” data “can then be physically erased 

when convenient, for example in a background process.”  Id., 3:39-41. As such, a 

POSITA would understand that an erase command (that results in a logical or actual 

erase) indicates that the data need not be preserved, ie., how UTL construes the term 

“the identified logical address is erased”.  Baker, ¶ 129.  

Alternatively, a POSITA would also understand that Bennett renders obvious 

receiving a message indicating that a logical address is erased under Petitioners’ 
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proposed construction of “the identified logical address is erased” as “plain and 

ordinary meaning[:] that the identified logical address is erased, not the data 

associated with the identified logical address is erased”.  See § VI, supra.  

Specifically, a POSITA would have understood that Bennett’s erase command could 

be sent by an “OS/file system” in a host, for example, in response to user interactions 

with an “application” to delete a document.  Baker, ¶¶ 130-33; Ex. 1002, Fig. 2 

(depicting components).  The POSITA would have also understood that the OS/file 

system keeps a mapping of file names (e.g., document.doc) and the associated 

logical addresses (e.g., 0x4000).  Id.  The OS/file system uses this mapping to set 

the correct logical address in the erase command in response to the user deletion of 

a file.  Id.; Ex. 1002, 17:52-56.  While Bennett does not explicitly disclose a host 

deleting a logical address in the mapping of an OS/file system, a POSITA would 

have known that hosts could delete logical addresses.  Baker, ¶ 133.  A POSITA 

would also understand that it would be a simple obvious matter to modify Bennett’s 

erase command to indicate the address deletion.  Id.  Such a modification would be 

motivated in order to effectuate the same purpose as Bennett’s disclosed erase 

commands: to initiate removal of obsolete data in storage.  Id. Bennett itself teaches 

that the process of deleting obsolete data in storage is common: 

When the data in a portion of the memory becomes obsolete, or the 

memory receives a command to erase a particular portion, in more 

advanced memory systems it is common for the designated portions 
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not to be erased immediately at that time, but to be “logically erased” 

by being marked for erase, with the actual, physical erase taking 

place at a later time.    

 
Ex. 1002, 3:25-32.   

Second, a POSITA would also understand that Bennett also teaches that the 

“indexer is further configured to remove an assignment between an identified logical 

address and a physical address of the solid-state storage medium” as claimed in 

response to receiving an erase command.  Specifically, as identified in claim 1[d], 

Bennett discloses an indexer in the form of a memory-side memory manager that 

“is responsible for relating a host’s logical address to a corresponding physical 

address in flash memory.”  As part of this process, Bennett teaches storing logical-

to-physical address tables in a GAT.  See Ex. 1002, 10:19-21, 10:65-11:60, Figs. 6, 

8A-8B.   

For physical erasures: Bennett teaches removing the assignment by writing 

FFs or 00s to the sector and setting an erased flag. Id., 20:20-27. This process 

removes the assignment and results in a logical address that can be re-mapped to a 

new physical block address.  See id. (the “logical group can again be associated with 

an MS block”); Baker, ¶ 137 (“MS block” refers to a physical block address).   

Similarly, for logical erasures: Bennett teaches removing the assignment by 

setting an erased flag.  Id., 20:47-49.  In this scenario, the previously assigned 
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physical address is no longer used.  Id., 20:47-50 (“In this case, all the data of the 

Logical Group will not be changed, but will not be read, as the host will be sent FFs 

or 00s as if the sectors were erased.”); Baker, ¶ 138.   

To the extent that UTL argues that Bennett’s logical and physical erase 

disclosures are not “remov[ing] an assignment between an identified logical address 

and a physical address” as claimed, a POSITA would understand this limitation is 

obvious.  Baker, ¶¶ 134-40.  For example, Bennett teaches that “sectors are 

‘logically’ erased at the sector level by standard techniques.”  Ex. 1002, Abstract; 

see also id., 6:18-20 (“For the specified sectors not forming complete block, the 

system uses the system’s standard, logical erase method.”).  A POSITA would 

understand that one known technique for recording a logical erase is “removing the 

assignment between an identified logical address and a physical address.”  Baker, ¶ 

139 (citing examples of a POSITA’s knowledge).  For example, the Suda prior art 

discussed herein discloses “canceling the relation between the logical block 

addresses and the physical addresses” and to “erase[] address information of the 

physical block [] and a logical block address.”  See § X.A.e.     

Thus, a POSITA would have understood that Bennett teaches this element. 

Baker, ¶¶ 125-40. 
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B. Claim 2 

a) Element 2[a] 

Bennett teaches that its memory-side memory manager (the claimed indexer) 

includes a “logical to physical address translation module [that] maps the logical 

address from the host to a physical memory location.”  Ex. 1002, Fig. 6, 9:50-52, 

10:36-38.  The manager performs this mapping through use of index entries, e.g., in 

a GAT.  See id., Fig. 8B (depicting an index mapping GAT sectors to logical 

addresses).  Thus, a POSITA would have understood that Bennett teaches this 

element.  Baker, ¶¶ 141-42 (Bennett teaches multiple addresses and each index entry 

maps a logical address to a physical address); see also Bennett’s Figs. 2, 3A, 4, 8A, 

8B (disclosing address mapping indexes with a plurality of index entries).  

b) Element 2[b] 

A POSITA would understand that Bennett teaches this element.  Bennett 

teaches that “sectors are ‘logically’ erased at the sector level by standard 

techniques.”  Ex. 1002, Abstract; see also id., 6:18-20 (“For the specified sectors 

not forming [a] complete block, the system uses the system’s standard, logical erase 

method.”).  A POSITA would have understood that one known technique for 

recording a logical erase is “remov[ing] an index entry corresponding to the 

identified logical address” as claimed.  Baker, ¶ 143 (citing examples of a POSITA’s 

knowledge).  For example, the Suda prior art discussed herein discloses removing 

the index mapping by “canceling the relation between the logical block addresses 
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and the physical addresses.”  See §§ X.A.e, infra (Ground 2).  A POSITA would 

have been motivated to modify Bennett’s teaching of setting a flag to remove the 

assignment between logical to physical address with this known technique as a 

simple matter of design choice and no more than a substitution of one of a limited 

number of potential ways to indicate an erasure that is known in the field.  Baker, 

¶ 143.  Thus, a POSITA would have understood that Bennett teaches this element.  

Baker, ¶¶ 143-44. 

C. Claim 3 

In the related litigations, UTL alleges that “Logical block addresses and 

physical addresses are both forms of index metadata. … [T]he logical block address 

[LBA] for that data – the location associated with it – is called metadata, which 

literally means data about data.”).  Ex. 1013, 4.  Bennett similarly teaches index 

metadata.  See, e.g., Ex. 1002, Fig. 3B (mapping logical-to-physical addresses).  

Bennett further discloses an indexer (the memory-side memory manager) with a 

“logical to physical address translation module” for assigning logical and physical 

addresses.  See, e.g., id., Fig. 6, 9:50-52, 10:36-38, Fig. 8B (depicting a GAT index 

mapping physical sectors to logical addresses). 

Bennett also teaches using a list of physical block addresses when making 

new logical-to-physical assignments.  For example, Bennett keeps, in a RAM of the 

controller, a cleared block list (CBL).  Id., Fig. 6.  The CBL contains a list of 
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physical block addresses that have been erased and are thus available for storing 

new data.  Id., 10:27-33.  A POSITA would have understood that Bennett’s system 

picks from, or uses, a physical block addresses from the CBL when assigning a 

physical block address to a new logical address.  Id., Fig. 6 (showing RAM data 

being read to inform the logical to physical address translation mapping); Baker, ¶ 

145.  Thus, a POSITA would have understood that Bennett teaches this element.  

Baker, ¶¶ 145-46.     

D. Claim 4 

Bennett teaches “[f]irmware stored in nonvolatile ROM 122 and/or the 

optional nonvolatile memory 124 provides codes for the processor 120 to implement 

the functions of the controller 100.”  Thus, a POSITA would have understood that 

Bennett teaches this element.  Baker, ¶ 147. 

E. Claim 5 

In the related litigations, UTL alleges that this element is met through a 

“garbage collection” process.  Ex. 1013, 4-5.  Bennett teaches garbage collection.  

See Ex. 1002, 19:10, 20:32. Indeed, “garbage collection” was a well-known process 

for erasing data in a background process at a convenient time.  Baker, ¶¶ 75-77, 149; 

compare Ex. 1002, 3:26-32 (“in more advanced memory systems it is common for 

the designated portions not to be erased immediately at that time, but to be ‘logically 

erased’ by being marked for erase, with the actual, physical erase taking place at a 
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later time”).  More specifically, a POSITA would have understood that Bennett 

discloses a garbage collector under either proposed construction.  UTL proposes that 

the term “garbage collector” is construed as “hardware and/or software for 

recovering space for a system that does not support update-in-place of data in the 

storage medium.”  See § VI, supra.  Bennett discloses the same thing. Baker, ¶ 149.  

For example, Bennett compares its solutions against other systems that support 

update-in-place.  Ex. 1002, 3:12-17 (“one way is rewrite the update data in the same 

physical memory location … This method of update is inefficient”).   

A POSITA would also have found it obvious to determine whether to perform 

garbage collection in response to the message (an erase command) as claimed.  For 

example, a POSTIA would have found it obvious to determine whether to initiate 

garbage collection in response to an erase command to effectuate Bennett’s goal of 

erasure of a “substantial size” of data.  Id., 3:5-9; Baker, ¶ 150.  A POSITA would 

recognize that there are a limited number of potential options as to when a garbage 

collection process should be initiated, and thus initiating a garbage collection 

process in response to an erase command of significant size would have been 

obvious.  Baker, ¶ 150.  Indeed, Bennett explicitly teaches that “it is desirable to 

have the erase block of substantial size … [to] amortize [the erase time] over a large 

aggregate of memory cells.”  Ex. 1002, 3:7-9. 
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F. Claim 6 

A POSITA would have understood that Bennett teaches a “bus interface” to 

couple Bennett’s memory system 20 (the claimed “solid state storage controller”) to 

the host 10 (the claimed “computer system”).  Ex. 1002, Fig. 1; Baker, ¶ 152. 

Bennett does not expressly disclose the types of bus interfaces that may be 

supported.  Even so, the claimed bus interfaces would have been obvious to a 

POSITA because they merely include industry standards that were well-known to a 

POSITA at the time.  Baker, ¶ 153.  For example, a POSITA would have known of 

the industry standard SATA interface.  Id.; Ex. 1007 (SATA 2.5 Standard).  Even 

the inventors admit that SCSI and ATA standards (which include SATA) were 

“ubiquitous.”  Ex. 1015, 92 (stating that object storage methodologies “are not 

ubiquitous like block device protocols (such as SCSI and ATA)”).  The SATA 

standard enjoyed widespread adoption throughout the computer industry.  Ex. 1007 

at 1 (listing major companies as board members, including Dell, Hewlett-Packard, 

Hitachi, Intel, Maxtor, Seagate, and Vitesse); Baker, ¶ 153.  The SATA standard 

was obvious because it defined a high-speed interface to ease integration and enable 

scalable performance with data rates of 1.5 Gbps and 3.0 Gbps.  Ex. 1007 at 19.  

Flash drives commonly implemented this SATA interface to achieve these high 

speeds and to enjoy widespread compatibility across the industry.  Baker, ¶ 153. 

Thus, it would have been obvious to a POSITA for Bennett’s host interface section 
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to be a common interface such as SATA.  Id., ¶¶ 152-54.            

G. Claim 12 

a) Element 12[a] 

This claim element recites limitations indistinguishable from the limitations 

of claim 1[a] and would have been obvious to a POSITA for the same reasons.  See 

§ IX.A.a, supra; Baker, ¶¶ 155-58. 

b) Element 12[b] 

Bennett teaches a storage interface with a storage client.  See Ex. 1002, Fig. 

1 (depicting host coupled to memory system 20).  Thus, a POSITA would have 

understood that Bennett teaches this element.  Baker, ¶ 159; see also discussion for 

claim 6, supra.             

c) Element 12[c] 

Bennett teaches a “controller 100 includes an interface 110.” The controller 

100 is the claimed storage processor. Baker, ¶ 161. The controller includes an 

“interface 110” that “has one component interfacing the controller to a host and 

another component interfacing to the memory 200.”  Ex. 1002, 6:66-7:4, Figs. 2 and 

6. Thus, a POSITA would have understood that Bennett teaches this element.  Baker, 

¶¶ 160-61. 

d) Element 12[d] 

Bennett teaches a flash memory device coupled to the storage processor.  See 

Ex. 1002, Figs. 2 and 6 (depicting “Flash Memory 200” coupled to controller 100). 
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Thus, a POSITA would have understood that Bennett teaches this element.  Baker, 

¶ 162.   

e) Element 12[e]  

According to UTL, the logical-to-physical translation layer is “often referred 

to as the FTL4 of the NAND flash memory.  The FTL is a structure/set of functions 

for mapping LBAs5 to Physical Blocks. … [T]ables are widely used in order to map 

sectors and pages from logical to physical (Flash Translation Layer or FTL).”  Ex. 

1013, 6.  A POSITA would have understood that Bennett teaches a logical-to-

physical translation layer under UTL’s example.  Baker, ¶¶ 163-64.    

Bennett teaches a “logical to physical address translation module [that] maps 

the logical address from the host to a physical memory location.”  Ex. 1002, Fig. 6, 

9:50-52, 10:36-38.  The mapping is stored, e.g., in the GAT.  See id., 10:19-21, 

10:65-11:60, Figs. 6, 8A-8B.  A POSITA would understand that the GAT is a logical 

to physical translation layer under UTL’s example.  Baker, ¶¶ 163-64. 

Bennett further teaches that the GAT is maintained by the storage processor 

as claimed.  See Ex. 1002, Fig. 2 (controller’s memory-side memory manager 

includes a “logical to physical translation” module coupled to flash memory 200), 

10:37-39 (logical to physical translation module “is responsible for relating a host’s 

 
4 “Flash Translation Layer.” 
5 “Logical Block Addresses.” 
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logical address to a corresponding physical address in flash memory”). Thus, a 

POSITA would have understood that Bennett teaches this element.  Baker, ¶¶ 163-

65. 

f) Element 12[f] 

Bennett’s controller is configured to receive, from a host through the host 

interface, an Erase Sectors command that includes a range of logical sectors (logical 

block addresses). Ex. 1002, Figs. 1-2, 17:52-56; Baker, ¶¶ 166-67.   

Bennet’s Erase Sectors command meets UTL’s proposed construction of 

“empty block directive command” of “a command that indicates that certain blocks 

contain data that does not need to be preserved.”  See § VI, supra.  For example, 

Bennett teaches treating erase commands for “partial groups” as a “logical” erase 

command. See § IX.A.e (explaining logical erasures of partial groups).  Such logical 

erase commands indicate that certain blocks contain data that “can then be 

physically erased when convenient, for example in a background process.”  Id.; Ex. 

1002, 3:39-41.  Thus, a POSITA would have understood that Bennett teaches logical 

erase commands that indicate certain blocks contain data that do not need to be 

preserved.  Id.; Baker, ¶ 166. 

Bennet’s Erase Sectors command also teaches Petitioners’ proposed 

construction of “empty block directive command” as “a command to empty data 

from a block.”  See § VI, supra.  Specifically, Bennett teaches treating erase 
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commands for full logical groups as commands to physically erase the data from 

that full logical group.  See § IX.A.e (explaining physical erasures of full logical 

groups).  The data will be “physically erased or otherwise subjected as a whole to 

an erase operation.”  Ex. 1002, 4:12-18.  Thus, a POSITA would have understood 

that Bennett teaches an erase command to empty data from a block by physically 

erasing the data from the blocks in that full logical group.  Baker, ¶ 167.    

g) Element 12[g]  

As discussed for claim 12[e], Bennett teaches the logical to physical 

translation layer as a GAT that maps logical to physical addresses.  See IX.G.e, 

supra.   

Bennett further teaches updating the GAT to indicate that the data stored in 

physical block addresses corresponding to the received logical block addresses do 

not need to be preserved.  Specifically, Bennett teaches setting flags in the GAT in 

response to receiving erase commands.  For example, for logical erasures, Bennett 

teaches: 

[T]he logical group can be marked as ‘logically’ erased in the GAT, 

if there is room there for an extra flag.  In this case, all the data of the 

Logical Group will not be changed, but will not be read, as the host 

will be sent FFs or 00s as if the sectors were erased.   

 
Id., 20:45-50.  A POSITA would understand that because these flags are sent in 

response to receiving an erase command, they indicate the data stored in physical 
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block addresses corresponding to the received logical block addresses do not need 

to be preserved as claimed.  Baker, ¶¶ 169-70. 

h) Element 12[h] 

Bennett teaches storing persistent data on the flash memory device under 

either construction of “persistent data.”  See § VI, supra (construing term).  Bennett 

teaches setting flags in a GAT. See § IX.G.g.  The GAT is stored in flash memory.  

See Ex. 1002, Fig. 6 (GAT 210 is part of flash memory 200).  Flash memory is 

nonvolatile; thus, any data stored in flash is “persistent data” under either proposed 

construction. Id., 1:29-30; Baker, ¶ 172.  Because the flags are set in response to 

receiving an erase command from a host (see § IX.A.e) a POSITA would understand 

that they indicate that the data (stored at the physical block addresses) corresponding 

to the received logical block addresses is deleted at the storage client.  Baker, ¶¶ 

172-73. 

Indeed, in the related litigations, UTL alleges that the Trim command 

infringes this element because it “tells the SSD that specific areas contain data that 

is no longer in use.  From the user’s perspective, this data has been deleted from a 

document.”  Ex. 1013, 7.  A POSITA would understand that Bennett teaches the 

same thing.  Specifically, in Bennett’s system, users may use an “Application” in a 

“HOST” (the claimed “storage client”) to delete data such as documents, which 

causes an erase command to be sent by the “OS/File System.”  Ex. 1002, Fig. 1. As 
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discussed in the preceding paragraph, Bennett’s memory system responds to the 

erasure of the document by setting flags.  As a result, the documents appear deleted 

from a user’s perspective.  Baker, ¶ 172.  In fact, Bennett’s flags make the deleted 

data or document appear deleted to the user because, in response to future reads of 

this data, Bennet’s system will return only all ones or all zeros if the user tries to 

read this data.  Ex. 1002, 20:45-50.  Thus, a POSITA would have understood that 

Bennett teaches this element.  Baker, ¶¶ 172-73. 

H. Claim 13 

Bennett discloses that the GAT (the claimed logical-to-physical translation 

layer) is stored in non-volatile flash memory that maps logical-to-physical 

addresses.  Ex. 1002, Fig. 6, 10:17-21, 10:65-11:60.  Thus, a POSITA would have 

understood that Bennett teaches this element.  Baker, ¶¶ 174-75.  

I. Claim 14 

Bennett’s Fig. 6 depicts a volatile memory device (RAM) coupled to the 

controller.  Ex. 1002, Fig. 6; Baker, ¶ 62 (RAM is volatile memory).  Bennett teaches 

that the RAM “acts as a cache for control data stored in flash memory 200.”  Ex. 

1002, 10:33-34.  Included in this RAM is a “GAT cache [that] is a copy … of entries 

in a subdivision of the 128 entries in a GAT sector.”  Id., 12:12-13.  A POSITA 

would understand that that the “GAT sector” being referred to is the GAT (stored in 

flash memory) that was previously identified as the claimed logical-to-physical 
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translation layer.  See § IX.G.e; Baker, ¶¶ 176-78.  As such, a POSITA would 

understand that the GAT cache is also logical-to-physical translation layer stored in 

volatile memory as claimed.  Id.      

J. Claim 15 

Bennett teaches responding to read commands for data marked as “logically 

erased” by returning a predetermined data string.  For example, Bennett discloses: 

[T]he logical group can be marked as ‘logically’ erased in the GAT, 

if there is room there for an extra flag. In this case, all the data of the 

Logical Group will not be changed, but will not be read, as the host 

will be sent FFs or 00s as if the sectors were erased.   

 
Ex. 1002, 20:45-50.  Thus, a POSITA would have understood that Bennett teaches 

this element.  Baker, ¶¶ 179-80. 

K. Claim 16 

In the related litigations, UTL alleges that a “string of ones or zeros are data 

bits that have a uniform logic level” as claimed.  Ex. 1013, 8.  Bennett teaches this.  

See discussion for claim 15, supra (sending host “FFs or 00s as if the sectors were 

erased”).  In additional, a POSITA would have generally understood all of Bennett’s 

references to “erasing” flash memory to mean setting all values to ones.  Baker, ¶ 

181.  Thus, a POSITA would have understood that Bennett teaches this element.  

Baker, ¶¶ 181-82.  



 

39 

X. Ground 2: Obvious Over Suda and POSITA Knowledge 

A. Claim 1 

a) Element 1[a]6  

If the preamble is a claim limitation, Suda teaches a non-volatile solid-state 

storage system.  Ex. 1003, Fig. 1, 2:59-65; Baker ¶ 184.  The following illustration 

annotates Figure 1 of Suda to show various claim elements, including this one: 

 
Ex. 1003, Fig. 1 (annotated). 

b) Element 1[b]  

Suda teaches that the memory card includes a solid-state storage medium in 

the form of nonvolatile flash memory.  Ex. 1003, Fig. 1 (annotated above), 2:63-66; 

 
6 See attached Claim Listing. 
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Baker ¶ 185. 

c) Element 1[c]  

Suda shows that the memory card has the recited “solid state storage 

controller” in the form of a “flash memory controlling section.”  Ex. 1003, Fig. 1, 

2:63-65.   This flash memory controlling section “operates based on the command 

information” (“in response to requests,” as recited) that is “issued from the host 

device” (“from a computer system,” as recited).  Id., 2:66-3:15, Fig. 1.  The flash 

memory controlling section implements the recited “storage operations” including 

reading (e.g., id., 2:41-43), writing (e.g., id., Fig. 11, step B6), and erasing (e.g., id., 

8:66-9:3).  Thus, a POSITA would have understood Suda to teach “a solid state 

controller configured to implement storage operations on the solid state storage 

medium in response to requests from a computer system.”  Baker, ¶ 186. 

Suda also teaches that its flash memory controlling section stores data 

pertaining to logical addresses of a logical address space at respective physical 

addresses of the solid state storage medium, as claimed.  Baker, ¶ 187.  Using Fig. 

2, Suda discusses a case of storing data, “where successive 256-Kbytes data items 

are written to two physical blocks in the memory card.”  Id., 3:24-27.  Half of the 

data is written to physical block 3, and the other 128 Kbytes of data items are written 

to physical block 5.  Id., 3:36-40.  Logical addresses are associated with the data at 

each of these physical addresses.  Id., 3:43-55, Fig. 2 (table 13a), Fig. 7 (annotated 
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at § X.A.d, infra); Baker, ¶ 187.  Thus, a POSITA would have understood Suda to 

teach this element.  Baker, ¶¶ 186-88. 

d) Element 1[d]  

A POSITA would have understood the claimed “indexer” to be the circuitry, 

software, and/or firmware in Suda’s “flash memory controlling section 11 [that] 

manages data erasure and a table indicating a relationship between logical blocks 

and physical blocks of the flash memory 14.”  Ex. 1003, 3:13-15; Baker, ¶ 189; see 

§ VI, supra (construing indexer and citing UTL’s example of “circuitry, software, 

and/or firmware” in Ex. 1013, 3). 

Suda provides various examples of the flash memory controlling section 

assigning logical addresses to physical addresses.  Ex. 1003, 3:33-40.  The assigned 

physical addresses are used to identify empty blocks (id., 3:64-67) or partially 

empty, partially used blocks “in which data items are written,” (id., 3:41-47, Fig. 2 

(showing partially empty block)).  The assigned logical-to-physical address 

mappings are stored in Suda’s logical and physical address table.  E.g., id., 3:43-55, 

Figs. 1, 7 (annotated below).  Thus, a POSITA would have understood Suda to teach 

an indexer configured to assign logical addresses of the logical address space to 

physical addresses in use to store data pertaining to the logical addresses on the 

solid-state storage medium.  Baker, ¶¶ 190-91. 
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Ex. 1003, Fig. 7 (annotated). 

e) Element 1[e]  

Suda teaches that the flash memory controlling section responds to a message 

from the host operating system indicating that the identified logical address is 

erased. For example, when receiving an erase command specifying logical block 

address 0x4000, Suda discloses, “[w]hen an erase command is issued from the host 

device 2, the flash memory controlling section 11 refers to the logical-to-physical 

conversion table 13a, and detects physical block address ‘3’ related to the logical 

block address ‘0x40000’ designated in the erase command.”  Ex. 1003, 8:66-9:3, 

Fig. 7 (annotated above to show the related addresses).  The message is sent by a 
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host device, such as a digital camera, which a POSITA would have known to be 

running an operating system.  Id., Fig. 1 (showing components), Fig. 8 (step S1); 

Baker, ¶ 192.  Thus, the indexer of Suda’s flash memory controlling section operates 

“in response to a message received from a host operating system,” as claimed.  

Baker, ¶ 192. 

In the following two examples where entire blocks are erased, Suda also 

teaches that the flash memory controller section is configured to remove an 

assignment between an identified logical address and a physical address in response 

to the erase command.  In a first example, an erase command for an entire block is 

received, causing the entire block to be marked by erasure area pointers as shown in 

Fig. 4.  Ex. 1003, Fig. 4.  In response, Suda teaches “canceling the relation between 

the logical block addresses and the physical addresses.”  Id., 5:65-6:3.  Thus, the 

relation (the claimed “assignment”) between the logical block address and the 

physical address are canceled (“removed,” as claimed).  Baker, ¶ 193.   

In a second example of Fig. 6, an erase command is received to erase memory 

including block B.  Id., 6:15-21.  In response, Suda again reiterates to “erase[] 

address information of the physical block B and a logical block address,” from the 

logical and physical address table.  Id., 6:33-41.  Again, the information (the claimed 

“assignment”) of the logical block address and the physical address are erased 

(“removed,” as claimed).  Baker, ¶ 193.  A POSITA would have understood both of 
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these examples as Suda’s flash memory controlling system cancelling/erasing an 

assignment between an identified logical address and a physical address of the solid-

state storage medium in response to an erase message.  Baker, Id.   

In addition, Suda’s erase command designates a logical address.  Ex. 1003, 

6:66-9:3. And a POSITA would have understood that Suda’s erase command 

indicates that “the identified logical address is erased” under either party’s 

construction.  Baker, ¶ 194; see § VI, supra (construing term).     

Under UTL’s construction, a POSITA would have understood Suda’s erase 

command to indicate that “the data identified by the logical address does not need 

to be preserved.”  Baker, ¶ 194; see § VI, supra (construing term).  Suda’s system 

responds to the erase command by using erasure area pointers to mark data at the 

designated addresses as in a “virtual erased state.”  E.g., Ex. 1003, 5:19-27.  Such 

virtually erased data is “to be erased” later from the flash memory, meaning the data 

will not be preserved.  E.g., id., 5:40-48, 5:57-61, 6:9-14, 6:29-45, 6:60-64, 7:38-

41; Baker, ¶ 194. 

Under Petitioner’s plain and ordinary meaning construction, a POSITA would 

have understood Suda’s erase command to indicate that “the identified logical 

address is erased” at the host device.  Suda shows the host device is a digital camera 

that lets users delete, for example, unwanted photos such as IMG001.jpg.  Id., Fig. 

1, 2:61-62.  A POSITA would have known that the digital camera keeps, in cache 
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memory, information about which logical identifiers are associated with which 

photos.  Baker, ¶ 195.  When a user selects to delete a photo, such as IMG001.jpg, 

the digital camera looks to this cache for the corresponding logical identifier and 

designates this logical identifier in an erase command.  Id.; Ex. 1003, 8:66-9:3.  As 

part of the deletion process, the camera will erase the cached entry of IMG001.jpg, 

along with the corresponding logical identifier, just like how Suda’s system erases 

assignments of logical to physical address information described a few paragraphs 

above, in order to free up cache memory.  Baker, ¶ 195.  Thus, a POSITA would 

have understood that when the erase command was issued, the erase command 

indicates that “the identified logical address is erased” in the memory of the digital 

camera.  Id., ¶ 195.  And, as discussed in the preceding paragraph, the memory 

device receiving the command further understands the erase command to mean that 

the memory device does not need to preserve the photo.  Id., ¶ 194. 

B. Claim 2 

a) Element 2[a]  

As discussed for claim 1[d], the indexer in Suda’s flash memory controlling 

section assigns logical addresses to physical addresses and stores the resulting 

assignments (the claimed “index entries”) in the logical and physical address table 

(part of the claimed “index”).  Ex. 1003, 3:13-15, 3:33-40, 3:64-67 (“physical block 

address is related to a logical block address in accordance with the control of the 
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flash memory controlling section”).  Logical and physical address table 13a in 

Figure 7 shows an example “use of index entries” to assign the logical and physical 

addresses.  Id., Fig. 7 (annotated at § X.A.D, supra), 3:48-55; see § VI, supra 

(providing UTL’s examples of “index entries”).  Thus, a POSITA would have 

understood Suda to teach this element.  Baker, ¶ 197. 

To the extent UTL argues that claim 2[a] requires consulting the index entries 

when making a new assigning logical address to physical address assignment, this 

would have been obvious to a POSITA as well.  Baker, ¶ 198-99.  Suda’s system 

does not assign physical block numbers that are already in use.  Baker, ¶ 198.  Suda 

uses this principle by requiring that an “unused physical block can be used when its 

physical block address is related to a logical block address in accordance with the 

control of the flash memory controlling section 11.”  Ex. 1003, 3:64-66 (emphasis 

added); see also Fig. 10 (showing assignment of unused physical block 4).  During 

address assignment, the index entries would be consulted to avoid assigning a 

physical address already in use.  Baker, ¶ 198.  

b) Element 2[b] 

As discussed for claim 1[e], Suda teaches to cancel/erase relationships 

between a logical block address and physical address in response to an erase 

command.  Ex. 1003, 5:65-6:3; 6:15-25, 33-41; see § X.A.e, supra (discussing 

examples with respect to Fig. 4 and Fig. 6 of Suda).  These cancellations/erasures 
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of index entries occur in response to an erase command that designates the logical 

address.  Ex. 1003, 6:18-21, 7:32-35, 7:45-51, 8:66-9:3.  As discussed for claim 

1[d], Suda’s flash memory controlling section is the claimed “indexer” that manages 

data erasure and the logical and physical address table.  Id. 3:13-15; see § X.A.d, 

supra.  Thus, a POSITA would have understood Suda to teach this claim.  Baker, ¶¶ 

200-01. 

C. Claim 3 

As discussed for claims 1[c]-[d], Suda teaches the claimed “storage 

controller” and “indexer.”  See §§ X.I.c-d, supra. This indexer maintains the logical 

and physical address table in a RAM (the claimed “memory”) connected to and 

controlled by the flash memory controlling section (“of the storage controller,” as 

claimed).  Ex. 1003, Fig. 1, 3:1-2, 3:13-15, 3:41-43.  As shown in Fig. 7 (annotated 

at claim 1[d], see § X.A.d, supra), the logical and physical address table includes 

assignment of logical addresses to physical addresses.  UTL contends that logical 

addresses and physical addresses are examples of “index metadata.”  See § VI, supra 

(citing Ex. 1013, 3).  For the reasons discussed for claim 2[a], a POSITA would 

have understood that Suda’s indexer assigns logical addresses to physical addresses 

by use of at least the physical addresses (the claimed “index metadata”) in the logical 

and physical address table maintained in a RAM of the flash memory controlling 

section, as claimed.  Baker, ¶¶ 203-04. 
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D. Claim 5 

Suda teaches this element under either construction of “garbage collector.”  

See § VI, supra (construing term as “hardware and/or software for recovering space 

for a system that does not support update-in-place of data in the storage medium”). 

Suda’s flash memory does not support direct rewriting/overwriting of data, meaning 

that it does not support “update-in-place of data in the storage medium.”  Id.; Baker, 

¶ 209; Ex. 1003, 1:54-55.  Thus, any hardware and/or software for recovering space 

on Suda’s flash memory fits UTL’s construction.  For example, Suda’s flash 

memory controlling section includes hardware/software is configured to manage 

erasures (recovery) of flash memory.  Ex. 1003, 3:13-15. 

Suda’s garbage collector is “configured to designate that the physical address 

previously assigned to the identified logical address comprises data suitable for 

removal from the solid-state storage medium in response to the message,” as 

claimed.  In response to an erase command designating a logical address, Suda 

teaches to use start and end erasure area pointers to designate that identified data is 

in a “virtual erased state.”  Ex. 1003, 5:19-23, Figs. 4-6 (illustrating examples of 

erasure area pointers), Figs. 7, 10 (showing erasure area pointers in table 13a).  

Virtually erased data is not yet erased, but is “to be erased” later, meaning that it is 

“suitable for removal,” as claimed.  E.g., id., 5:40-48, 5:57-61, 6:9-14, 6:29-45, 

6:60-64, 7:38-41; Baker, ¶ 210.  The areas designated by the erasure area pointers 
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are the physical addresses identified by logical addresses in an erase command.  E.g., 

Ex. 1003, 6:15-21, 7:29-34, 8:66-9:3.  Suda’s erasure area pointers are set as part of 

a process that includes recovering the virtually erased space, consistent with UTL’s 

construction of “recovering space.”  Baker, ¶ 210.  Suda’s blocks will be physically 

erased (or “recovered”) once the block fills up with virtually erased data.  Ex. 1003, 

Figs. 4, 6, Fig. 8 (steps S5 and S6), 5:54-6:3 (in order that a physical block … to be 

erased be set in an unused state), 6:15-41 (“thereby setting the entire area (area 25) 

of the physical block B in an unused state.”).  For these reasons, a POSITA would 

have understood that Suda teaches the garbage collector as claimed, under either 

party’s construction.  Baker, ¶¶ 209-11. 

E. Claim 6 

A POSITA would have understood that Suda teaches a host interface section 

12 as the “bus interface” that communicatively couples Suda’s flash memory 

controlling section (the claimed “solid state storage controller”) to the host device 

(the claimed “computer system”).  Ex. 1003 at Fig. 1, 3:4-6; Baker, ¶ 212. 

Suda does not expressly disclose the types of bus interfaces that may be 

supported by the host interface section 12.  Even so, the claimed bus interfaces 

would have been obvious to a POSITA because they merely include industry 

standards that were well-known to a POSITA at the time.  Baker, ¶ 213.  For 

example, a POSITA would have known of the industry standard SATA interface.  
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Id.; Ex. 1007 (SATA 2.5 Standard).  Even the inventors admit that SCSI and ATA 

standards (which include SATA) were “ubiquitous.”  Ex. 1015, 92 (stating that 

object storage methodologies “are not ubiquitous like block device protocols (such 

as SCSI and ATA)”).  The SATA standard enjoyed widespread adoption throughout 

the computer industry.  Ex. 1007 at 1 (listing major companies as board members, 

including Dell, Hewlett-Packard, Hitachi, Intel, Maxtor, Seagate, and Vitesse); 

Baker, ¶ 213.  The SATA standard was obvious because it defined a high-speed 

interface to ease integration and enable scalable performance with data rates of 1.5 

Gbps and 3.0 Gbps.  Ex. 1007 at 19.  Flash drives commonly implemented this 

SATA interface to achieve these high speeds and to enjoy widespread compatibility 

across the industry.  Baker, ¶ 213.  Thus, it would have been obvious to a POSITA 

for Suda’s host interface section to be a common interface such as SATA.  Id., ¶¶ 

213-14. 

F. Claim 12 

a) Element 12[a] 

If the preamble is limiting, Suda teaches a non-volatile solid-state storage 

system.  Ex. 1003, Fig. 1, 2:57-66; Baker, ¶ 216.  This system includes flash memory 

provided as NAND type nonvolatile memory.  Ex. 1003, Fig. 1, 2:57-66.  The 

following annotated version of Ex. 1003, Fig. 1 (annotated below) shows various 

claimed components: 
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b) Element 12[b] 

A POSITA would have understood that Suda teaches that the memory device 

includes a host interface section (the claimed “storage interface”) that communicates 

with a host device (the claimed “storage client”).  Ex. 1003, 2:63-67, 3:4-6, Fig. 1 

(annotated at § X.F.a, supra); Baker, ¶ 217.   

c) Element 12[c] 

Suda teaches that the memory device includes a flash memory controlling 

section, which is the claimed “storage processor.”  Ex. 1003, 2:63-64; Baker, ¶ 218.  

This flash memory controlling section is coupled to the host interface section.  Id., 

2:66-3:1, Fig. 1 (annotated at § X.F.a, supra). 
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d) Element 12[d] 

Suda teaches that “the flash memory controlling section 11 is connected to 

. . . the flash memory 14,” which is the claimed “flash device.”  Ex. 1003, 3:1-3, 

Fig. 1 (annotated at § X.F.a, supra); Baker, ¶ 219. 

e) Element 12[e] 

According to UTL, the logical-to-physical translation layer is “often referred 

to as the FTL7 of the NAND flash memory.  The FTL is a structure/set of functions 

for mapping LBAs8 to Physical Blocks. … [T]ables are widely used in order to map 

sectors and pages from logical to physical (Flash Translation Layer or FTL).”  Ex. 

1013, 6.  A POSITA would have understood that Suda teaches a logical-to-physical 

translation layer under UTL’s example.  Baker, ¶ 221.  Suda teaches a logical-to-

physical translation layer that includes the logical and physical address table and the 

erasure area pointer storage area.  Id., 221-22; Ex. 1003, Fig. 1.  Both of these tables 

are managed (or “maintained,” as claimed) by the flash memory controlling section 

(the claimed “storage processor”).  Ex. 1003, 3:13-15.  These tables are structures 

that map logical block addresses to corresponding respective physical block 

addresses, thereby implementing the FTL as argued by UTL.  Baker, ¶ 221.  An 

annotated version of Suda’s Fig. 7 below shows how the logical and physical 

 
7 “Flash Translation Layer.” 
8 “Logical Block Addresses.” 
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address table 13a maps logical block addresses to corresponding respective physical 

addresses: 

 

Ex. 1003, Fig. 7 (annotated); see also id., 3:41-55 (describing how the logical and 

physical address table maps logical block addresses to physical block addresses).  

Thus, a POSITA would have understood Suda to teach this element. Baker, ¶ 221-

23. 

f) Element 12[f] 

Suda teaches, “A command issued from the host device 2 to the memory card 

1 is input to the host interface section 12 …. The flash memory controlling section 
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11 operates based on the command information and address information from the 

host interface section 12.”  Ex. 1003 at Fig. 1 (annotated at § X.F.a, supra), 3:4-12. 

These commands include erase commands that designate a logical block address.  

Id., 7:30-34, 8:66-9:3.  In some of Suda’s examples, the erase commands include a 

range of logical block addresses, as claimed.  Id. at Fig. 6 (showing a range spanning 

three blocks), 6:15-26 (“an erase command to erase data items written to a number 

of physical blocks .… the case where an erase command to erase data items written 

to three physical blocks”).  Thus, a POSITA would have understood that Suda taught 

that the flash memory controlling section (the claimed “storage processor”) was 

configured to receive, from the host device (the claimed “storage client”) through 

the host interface section (the claimed “storage interface”), an erase command and 

a range of logical block addresses.  Baker, ¶¶ 224-25. 

A POSITA would have understood that Suda’s erase command was an empty-

block directive command under either claim construction.  See § VI, supra 

(construing term).  Baker, ¶ 226.  Under UTL’s construction, Suda’s erase command 

indicates that blocks contain data that does not need to be preserved for the reasons 

discussed for claim 1[e], namely that Suda responds to the command by marking 

the data in blocks as virtually erased and “to be erased” later.  See § X.A.e, supra; 

Baker, ¶ 226.  Under the Petitioner’s construction, Suda’s erase command is treated 

as a command to empty data from a block for similar reasons.  Baker, ¶ 227.  Suda 
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responds to the erase commands by marking data from a block “to be erased” later, 

thus treating the erase command as a command to empty data from a block (though 

not necessarily immediately). See § X.A.e; Baker, ¶ 227.  Thus, a POSITA would 

have found that Suda teaches this claim element under either construction.  Baker, 

¶¶ 226-28. 

g) Element 12[g] 

A POSITA would have understood Suda to teach updating the erasure area 

pointers storage area in the logical-to-physical translation layer to indicate that the 

data stored in the corresponding physical blocks do not need to be preserved.  Ex. 

1003, Fig. 8 (updating at step S4); Baker, ¶ 230.  As discussed for claim 1[e], Suda 

teaches to use erasure area pointers to mark data at the designated addresses as in a 

“virtual erased state,” and is “to be deleted,” meaning the data will not be preserved.  

See § X.A.e, supra; Ex. 1003, 5:40-48, 5:57-61, 6:9-14, 6:29-45, 6:60-64, 7:38-41; 

Baker, ¶ 230. 

h) Element 12[h]  

Suda teaches this element under either construction of “persistent data.”  See 

§ VI, supra (construing term).  Flash memory is nonvolatile; thus, any data stored 

in flash is “persistent data” under either party’s construction.  Ex. 1003, 2:65-66.   

Suda stores a copy of its erasure area pointers in flash memory to avoid losing 

the erasure area pointers when the power supply is turned off.  Ex. 1003, 8:3-16 (“it 
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writes, in the flash memory 14 also, the data items written to the erasure area pointer 

storage area …. even if a power supply to the memory card 1 is turned off … a 

virtual erased state is also maintained.”). An annotated version of Ex. 1003, Fig. 1 

shows this process: 

 

These erasure area pointers are set in response to an erase command.  Ex. 

1003, 7:11-55.  According to UTL, the accused Trim command infringes this 

element because “The TRIM command tells the SSD that specific areas contain data 

that is no longer in use.  From the user’s perspective, this data has been deleted from 

a document.”  Ex. 1013, 7.   

Under UTL’s reasoning, Suda’s persistent erasure area pointers indicate “that 

the data corresponding to the received logical block addresses is deleted at the 
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storage client,” as claimed.  This because Suda teaches the same thing accused by 

UTL: erasure area pointers indicate data that is no longer in use, and, “From the 

user’s perspective, this data has been deleted from a document.”  Ex. 1013, 7; Baker, 

¶ 234-35.  Suda shows the host device is a digital camera that lets users delete 

unwanted photos.  Ex. 1003, Fig. 1, 2:61-62.  A POSITA would have known that, 

when a user selects a photo to delete, the digital camera will look up the logical 

address corresponding to the digital photo selected for deletion and issue an erase 

command to the memory device, the erase command designating the logical address.  

Baker, ¶¶ 235-36; Ex. 1003, 8:66-9:3, Fig. 1.  As a result, the photo will appear 

deleted from a user’s perspective.  Baker, ¶¶ 235-36.  In fact, Suda’s memory device 

uses erasure area pointers to mark this data as in a “virtual erased state,” which 

indicates that this data is no longer in use should appear deleted from the user’s 

perspective.  Ex. 1003, 5:14-27, 8:21-41; Fig. 9; Baker, ¶¶ 235-37.  This indicated 

data cannot be read by the user; Suda’s system will instead return initial-value (or 

empty) data.  Ex. 1003, 5:14-27, 8:21-41.  Thus, a POSITA would have understood 

Suda to teach this element in the same way that UTL accuses the TRIM command 

of infringement.  Baker, ¶¶ 232-38. 

G. Claim 13 

As discussed for claim 12[h], Suda teaches to store its erasure area pointers 

in the flash memory device in order to prevent data loss when powered off.  See 
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§ X.F.h, supra.  It would have been obvious to a POSITA that the rest of Suda’s 

logical-to-physical translation layer, including the logical and physical address 

table, also be similarly stored in persistent memory for the same reason.  Baker, ¶ 

240.  A POSITA would have known that flash-memory devices also use this same 

technique to preserve the logical-to-physical mappings in the flash memory when 

powered off.  Id.  A POSITA would have understood that both tables can be 

preserved by storing their data in the nonvolatile flash memory.  Id.  Otherwise, the 

logical-to-physical mappings would be lost every time the power is turned off.  Id.  

Thus, a POSITA would have found it obvious to store Suda’s logical-to-physical 

translation layer, including the logical and physical address table, in the flash 

memory device.  Baker, ¶ 239-41.  

H. Claim 14 

Suda illustrates RAM 13 (the claimed “volatile memory device”) coupled to 

the flash memory controlling section (the claimed “storage processor”).  Ex. 1003, 

Fig. 1 (annotated at § X.F.a, supra).  For the reasons discussed for claim 12[e], a 

POSITA would have understood that the logical and physical address table and 

erasure area pointer storage area make up the logical-to-physical translation layer.  

Id., Fig. 1, 2:63-3:3, 3:41-47, 4:1-3, 9:7-11; see § X.F.e, supra.  Thus, a POSITA 

would have understood Suda to teach this element.  Baker, ¶¶ 242-44. 
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I. Claim 15 

Suda teaches this claim element in Fig. 9.  Ex. 1003, 8:21-41 (explaining 

steps).  The flash memory controlling section (the claimed “storage processor”) is 

configured to perform these steps responsive to a data read command.  Id., 8:21-29.  

At step A2, the flash memory controlling section 11 determines that the read address 

is included in the erasure area specified by a previous erase command (the claimed 

“empty-block directive command”).  Id., 8:35-38.  Then at step A3, the flash 

memory controlling section outputs “initial-value data” instead of user data.  Id., 

8:35-41.  A POSITA would have understood that initial-value data refers to the data 

initially written in an unused memory device, which would be a string of empty 

values (typically all 1’s).  Id., 3:58-59, 4:4-6; Baker, ¶ 245.  Thus, a POSITA would 

have understood Suda to teach this claim.  Baker, ¶¶ 245-46. 

Aside from Suda’s disclosure, the background of the ’727 patent admits that 

this claim element was known.  The inventors admitted in the background, “Another 

method of erasing data is to write zeros, ones, or some other null data character to 

the data storage device.”  Ex. 1001, 1:37-9, 1:56-60.   

J. Claim 16 

As discussed for claim 15, a POSITA would have understood initial value 

data as the data initially written in an unused physical block, in other words, a string 

of empty values (typically all 1’s). Id., 3:58-59, 4:4-6; Baker, ¶ 247; see § X.I, supra.  
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Thus, a POSITA would have understood Suda to teach this claim.  Baker, ¶¶ 247-

48.  Additionally, the inventors admit in the background of the ’727 patent that this 

claim was known. Ex. 1001, 1:56-60 (“The storage device may also receive a 

command to read the erased file so the storage device may transmit a stream of 

zeros, ones, or a null character to the requesting device.”).   

XI. Ground 3: A POSITA Would Have Found Claims 4 and 13 Obvious In 
View of Suda, Bennett and the Knowledge of a POSITA. 

A. Claim 49 

Claim 4 depends on Claim 1, which would have been obvious to a POSITA 

for the reasons discussed under Ground 2.  See § X.A, supra.  Suda does not 

explicitly show the internal components of its flash memory controlling section or 

state that the indexer in the flash memory controlling section includes “firmware.”  

See Ex. 1003 at Fig. 1.  However, as evidenced by Bennett, it would have been 

obvious to a POSITA for Suda’s indexer to comprise firmware.  Baker, ¶ 207. 

Bennett shows typical internal components, including ROM, in a controller 

in Fig. 1.  Ex. 1002 at Fig. 1.  Bennett teaches, “Firmware stored in nonvolatile ROM 

122 and/or the optional nonvolatile memory 124 provides codes for the processor 

120 to implement the functions of the controller 100.”  Id., 7:4-7, 24:19-20.   

It would have been obvious to a POSITA that the indexer in Suda’s “flash 

 
9 See attached claim listing 
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memory controlling section” would have had similar internal components to those 

described in Bennett, including firmware.  Baker, ¶ 207.  This firmware would have 

enabled Suda’s flash memory controlling section 11 to “implement the functions of 

the controller” as Bennett describes.  Ex. 1002, 7:4-7; Baker, ¶ 207.  Thus, claim 4 

would have been obvious to a POSITA in view of Suda and Bennett. Baker, ¶¶ 207-

08.   

B. Claim 13 

Claim 13 depends on Claim 12, which would have been obvious to a POSITA 

for the reasons discussed under Ground 2.  To the extent that UTL disagrees that 

claim 13 would not have been obvious to a POSITA based on Suda alone, claim 13 

would have been obvious to a POSITA in further view of Bennett.  Bennett teaches, 

“mappings between logical groups and physical groups … are stored in a set of table 

and lists distributed among the nonvolatile flash memory 200 and the volatile but 

more agile RAM.”  Id. at 10:40-43; see also §§ X.A.d, X.H, supra (discussing how 

Bennett teaches this element).  This implements a common technique called 

“caching,” where the logical to physical address table is stored in RAM for faster 

access and also stored in nonvolatile flash so it is not lost when powered off.  Baker., 

¶ 240.  Suda already does this for its erasure area pointers.  Ex. 1003, 8:3-16.  A 

POSITA would have found it obvious that Suda’s logical and physical address table 

could be cached in the same way, such that it is also stored in nonvolatile flash 
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memory in addition to RAM.  Baker ¶ 240.  Suda already taught storing the logical 

and physical address table in RAM, and Suda already recognize the desirability of 

not losing data when powered off.  Ex. 1002, Fig. 1, 8:6-16.  Thus, a POSITA would 

have found this claim obvious.  Baker., ¶ 240. 

XII. Secondary considerations 

Simultaneous invention by others shows that the claims fall within the level 

of the ordinary skill in the art.  “Independently made, simultaneous inventions, made 

within a comparatively short space of time, are persuasive evidence that the claimed 

apparatus was the product only of ordinary mechanical or engineering skill.” Geo. 

M. Martin Co. v. All. Mach. Sys. Int’l LLC, 618 F.3d 1294, 1305 (Fed. Cir. 2010).  

The Board has held that exhibits of a standard-setting group on a related standard 

“are evidence of simultaneous invention by others,” support finding challenged 

claims obvious, and “are persuasive evidence that the claimed apparatus ‘was the 

product only of ordinary mechanical or engineering skill.’”  ZTE (USA) Inc. v. 

Evolved Wireless LLC, No. IPR2016-00757, Paper 42, at 29 (P.T.A.B. Nov. 30, 

2017).   

Here, exhibits 1017-1019 show that standard-setting group T13 began work 

on the Trim command proposal at least by April 21, 2007, only four months from 

the earliest possible (disputed) priority date.  Baker, ¶ 91.  UTL accuses this Trim 

command of infringing the claims.  Ex. 1013, passim.  Like the ZTE case, here a 
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standard-setting group worked on the same technology around the same time.  Exs. 

1017-1019.  Also, Suda and Bennett teach similar commands.  Ex. 1002, 17:52-56 

(an erase command “specifies the (logical) sectors to be erased”); Ex. 1003, 9:2-3 

(“logical block address ... designated in the erase command”).  Furthermore, many 

claim elements were already well-known in the art.  See, e.g., Ex. 1010 § 2.2 (Ban 

patented the FTL in 1995, and the FTL became part of an industry standard), § 2.3 

(explaining the garbage collection process).  Thus, Exhibits 1002-1003 and 1017-

1019 all serve as evidence of simultaneous invention by others, and the Board 

should find the challenged claims obvious for being only the product of ordinary 

mechanical or engineering skill. 

XIII. The Parallel District Court Litigations Do Not Warrant Denying 
Institution 

When considering a parallel proceeding, the PTAB “balances” considerations 

such as “system efficiency, fairness, and patent quality” using the six factors set 

forth by the Board in Apple Inc. v. Fintiv, Inc., IPR2020-00019, Paper 11 (P.T.A.B. 

Mar. 20, 2020) (precedential).  These factors “overlap,” and a “holistic view” should 

be taken. Id., p. 6.  

The fourth factor (overlap) strongly favors institution.  Petitioners have 

stipulated that they will not pursue invalidity on the same grounds—or even the 

same references—if the Board institutes trial in this proceeding. Ex. 1028.  

Petitioners modeled this stipulation on the stipulation that the Board found to 
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“mitigate any concerns” in VMware, Inc. v. Intellectual Ventures I LLC, IPR2020-

00470, Paper 13 at 20 (P.T.A.B. August 18, 2020).  This fourth factor favors 

institution here even more so than in Apple, Inc. v. SEVEN Networks, LLC, 

IPR2020-00156, Paper 10 (P.T.A.B. June 15, 2020).  There, the petitioner provided 

no stipulation. Id. pp. 16-19.  Nevertheless, the fourth factor “strongly favored” 

petitioner.  Id.   

The third factor (investment in parallel proceeding) also favors institution. 

The District Court has not issued any substantive opinions regarding the scope or 

validity of the challenged claim, and given Petitioners’ stipulations, the Court is 

unlikely to invest any resources on the grounds raised in this petition, either before 

or after the scheduled institution date.  Furthermore, the parallel proceeding is in an 

early stage: the Court is deciding Petitioners’ motions to dismiss, Petitioners have 

not otherwise answered, fact discovery is not open and only initial contentions have 

been exchanged.  Exs. 1016, 1029.  

Regarding the sixth factor (merits, other circumstances), the merits strongly 

weigh in favor of instituting trial as shown through the strength of the grounds in 

this petition. Other circumstances also favor institution. Like in Apple v. SEVEN, 

the parallel litigations are complex, involving 3 patents, 34 asserted claims, and 

hundreds of accused products, and the District Court requires reduction of claims 

pre-trial.  Apple v. SEVEN, 21-22; Ex. 1031, 10 (weighing claim reductions).  An 
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IPR trial, in contrast, allows a focus on resolving all challenged claims in a single 

patent, thus “enhanc[ing] the integrity of the patent system.”  Apple v. SEVEN at 22.   

Fintiv factors 1 (stay) and 2 (proximity of trial dates) do not significantly 

weigh for or against instituting IPR.  Petitioners do not know if the District Court 

will stay the case if trial is instituted and the Court has not yet set the trial date.  The 

District Court estimated a February 2022 date, but ordered the parties to only file a 

proposed schedule up to the Markman hearing stage. Ex. 1029; compare Micron 

Tech., Inc. v. Godo Kaisha IP Bridge 1, IPR2020-01007, Paper 15 at 10-13 

(P.T.A.B. December 7, 2020) (the “proximity factor in Fintiv, on its face, asks us to 

evaluate our discretion in light of trial dates that have been set in parallel litigations, 

not to speculate as to trial dates that are still to-be-determined”).  Moreover, the 

estimated trial date is uncertain given that District Court has set about 99 cases for 

trial between now and February 2022. This equates to an average of about 1-2 trials 

per week. In addition, 28 cases have been set for trial for the eight-week period 

between January to February 2022.10 See Globalfoundries Inc. v. UNM Rainforest 

Innovations, IPR2020-00984, Paper 11 at concurrence 3 (P.T.A.B. Dec. 9, 2020) 

(weighing large number of trials and proportion of reschedule trials and noting “as 

the period of time remaining before trial increases, the certainty that the trial date 

 
10 Petitioners reviewed trial date data from Bloomberg Law Dockets. 



 

66 

will remain unchanged decreases”).11    

XIV. Mandatory Notices 

A. Real Parties-in-Interest 

The named Petitioners are the only entities who are funding and controlling 

this Petition and are therefore all named as real parties-in-interest.  No other entity 

is funding, controlling, or otherwise has an opportunity to control or direct this 

Petition or Petitioner’s participation in any resulting IPR.   

Out of an abundance of caution, Petitioners also identify Denali Intermediate 

Inc., which is a corporate parent entity of Dell Inc., as a real party-in-interest.  

Petitioners also identify that there are many entities such as suppliers, resellers, part 

providers, contractors, etc. who may have financial liabilities with respect to the 

hundreds of accused products in the related litigations.  Petitioners do not believe 

that any of these entities, however, are real parties-in-interest.  None of these other 

entities participated in the preparation or funding of this Petition or otherwise had 

an opportunity to control or direct this Petition.  To Petitioners’ best knowledge, no 

entity, other than Petitioners, has been served with a complaint alleging 

infringement of the patent at issue herein. 

 
11 In many courts, more than 50% of cases have their initial trial date continued. 
Ex. 1036, 64 & Table 25 (average delay is three to six months); see also Precision 
Planting LLC v. Deere & Co., IPR2019-01048, Paper 17 at 15–19 (P.T.A.B. Dec. 
4, 2019) (courts modify deadlines “for myriad reasons”).     
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B. Related Proceedings 

In three related lawsuits, UTL asserted the ’727 patent against Petitioners in 

the Western District of Texas, Case Nos. 6:20-cv-499, -500, and -501.  UTL filed 

each lawsuit on June 5, 2020.   

C. Lead and Backup Counsel 

The following lead and backup counsel represent Petitioners: 

Lead Counsel for Petitioner Backup Counsel for Petitioner 

Katherine A. Vidal  
Winston & Strawn LLP 
275 Middlefield Rd., Suite 205  
Menlo Park, CA 94025 
kvidal@winston.com 
T: 650.858.6500, F: 650.858.6550 
USPTO Reg. No. 46,333 

Michael Rueckheim 
Winston & Strawn LLP 
275 Middlefield Rd., Suite 205  
Menlo Park, CA 94025 
mrueckheim@winston.com 
T: 650.858.6500, F: 650.858.6550 
(to seek pro hac vice admission) 

 ***************  
Qi (Peter) Tong 
Winston & Strawn LLP 
2121 N. Pearl St.  
Dallas, TX 75201 
ptong@winston.com 
T: 214.453.6473, F: 214.453.6400 
USPTO Reg. No. 74,292 

 
D. Electronic Service 

Petitioners consent to electronic service at: 

Winston-IPR-Unification@winston.com 

XV. Fees 

Petitioners have paid the required fee electronically through P.T.A.B. E2E. 
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XVI. Conclusion 

Petitioners respectfully request that the Board institute IPR and enter a final 

written decision finding the challenged claims unpatentable. 

 
Dated: December 23, 2020 Respectfully submitted, 
 

 / Katherine A. Vidal / 
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T: 650.858.6500, F: 650.858.6550 
USPTO Reg. No. 46,333 
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Technology, Inc.; Micron 
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CLAIM LISTING 
 

Claim 1 

Element Language 

1[a] A non-volatile solid-state storage system, comprising: 

1[b] a solid-state storage medium; 

1[c] a solid-state storage controller configured to implement 

storage operations on the solid-state storage medium in 

response to requests from a computer system, including 

storing data pertaining to logical addresses of a logical 

address space at respective physical addresses of the 

solid-state storage medium; and 

1[d] an indexer, comprised within the solid-state storage 

controller, wherein the indexer is configured to assign 

logical addresses of the logical address space to physical 

addresses in use to store data pertaining to the logical 

addresses on the solid-state storage medium; 

1[e] wherein the indexer is further configured to remove an 

assignment between an identified logical address and a 
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physical address of the solid-state storage medium in 

response to a message received from a host operating 

system, the message indicating that the identified logical 

address is erased. 

 

Claim 2 

Element Language 

2[a] The apparatus of claim 1, wherein the indexer assigns 

logical addresses to physical addresses by use of index 

entries, 

2[b] and wherein the indexer removes an index entry 

corresponding to the identified logical address in response 

to the message. 

 

Claim 3 

Element Language 

3 The apparatus of claim 1, wherein the indexer assigns 

logical addresses to physical addresses by use of index 

metadata maintained in a memory of the storage 
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controller. 

 

Claim 4 

Element Language 

4 The apparatus of claim 1, wherein the indexer comprises 

firmware of the solid-state storage controller. 

 

Claim 5 

Element Language 

5 The apparatus of claim 1, further comprising a garbage 

collector configured to designate that the physical address 

previously assigned to the identified logical address 

comprises data suitable for removal from the solid-state 

storage medium in response to the message. 

 

Claim 6 

Element Language 

6 The apparatus of claim 1, wherein the solid-state storage 

controller comprises a bus interface configured to 
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communicatively couple the solid-state storage controller 

to the computer system, wherein the bus interface 

comprises one of a universal serial bus interface, an 

Institute of Electrical and Electronics Engineers 1394 bus 

interface, an external Serial Advanced Technology 

Attachment bus interface, a Peripheral Component 

Interconnect (PCI) bus interface, a PCI Express bus 

interface, an InfiniBand interface, an Integrated Drive 

Electronics (IDE) bus interface, an AT Attachment 

(ATA) interface, a Parallel ATA (PATA) interface, a 

Serial ATA (SATA) bus interface, an external SATA bus 

interface, a Small Computer System Interface (SCSI) bus 

interface, an internet SCSI interface, and a Fibre Channel 

interface. 

 

Claim 12 

Element Language 

12[a] A non-volatile solid-state storage system, comprising: 

12[b] a storage interface configured to communicate with a 
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storage client; 

12[c] a storage processor coupled to the storage interface; 

12[d] a flash memory device coupled to the storage processor; 

and 

12[e] a logical-to-physical translation layer maintained by the 

storage processor, wherein the logical-to-physical 

translation layer maps logical block addresses to 

corresponding respective physical block addresses of the 

flash memory device, 

12[f] wherein the storage processor is configured to: receive, 

from the storage client through the storage interface, an 

empty-block directive command and a range of logical 

block addresses, 

12[g] update the logical-to-physical translation layer to indicate 

that data stored in physical block addresses corresponding 

to the received logical block addresses do not need to be 

preserved, and 
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12[h] store persistent data on the flash memory device, the 

persistent data indicating that the data corresponding to 

the received logical block addresses is deleted at the 

storage client. 

 

Claim 13 

Element Language 

13 The system of claim 12, wherein the logical-to-physical 

translation layer is stored in the flash memory device. 

 

Claim 14 

Element Language 

14 The system of claim 12, further comprising a volatile 

memory device coupled to the storage processor, wherein 

the logical-to-physical translation layer is stored in the 

volatile memory device. 

 

Claim 15 

Element Language 
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15 The system of claim 12 wherein the storage processer is 

configured such that, responsive to receiving a read 

request specifying one or more logical addresses included 

in the empty-block directive command, the storage 

processor returns a predetermined data string. 

 

Claim 16 

Element Language 

16 The system of claim 15, wherein data bits of the 

predetermined data string have a uniform logic level. 
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