EE 421L – Digital IC Design Lab – Lab 3 

Authored by James Skelly

Email: skellj1@unlv.nevada.edu

September 11, 2018

 

Lab description

·        In this lab, we will layout the 10-bit DAC that we designed and simulated in Lab 2.

 

 

Zipped-Up Lab 3 Directory

<<lab3.zip>>

 

 

Pre-Lab

 

Finishing Up Tutorial 1

 

·        In its entirety, tutorial 1 takes us through:

o   Installation of Cadence

o   Set up of libraries

o   Drafting/simulating a voltage divider schematic

o   Creation of a resistive divider symbol

o   Layout of a resistor

o   Layout of a resistive divider

o   DRC of layout

o   LVS of resistive divider layout versus resistive divider schematic

 

The photos below show the layout of the resistive divider, and the results of the LVS verification.

 

 

 

 

 

Lab Tasks

 

·        Use the n-well to layout a 10k resistor

o   Discuss how to select width and length of the resistor (reference process info from MOSIS)

·        Use this resistor to layout a 10-bit DAC

o   Discuss how the width and length of the resistor are measured

·        Ensure that each resistor in the DAC is laid out in parallel (the resistors are stacked)

·        All input and output pins should be on metal 1

·        DRC and LVS your design

·        Zip up final design directory and place it in lab3 directory with a link to your lab report

 

 

 

Lab

 

Layout of 10k Resistor using N-Well

 

From the MOSIS parameters file for ami-C5 (the C5 process), we see that for n-well, sheet resistance is 796 ohms/sq.

 

https://lh6.googleusercontent.com/SyrlDlV7wtil9-4su49aZ3xTFwu9bf649Ivh0qubknlng0btVoxmmva1Z4OJVdvmWdxZJV3ZeQO4M59-MnjAdYcFWKEtkNqARqLyS1zR9_VdQkU0eGVY-VdCTN489PHzbydbjoM

https://lh3.googleusercontent.com/HFZ5tOMbdUTIUL4OmQh80TGG-B2Tb4sT1z299_4xpkJW946dB99R8eqNDxFDDTTLnb91qjJlKPBmax3y5GQ_-BbbL2V3wcWubDwSmb95N2sjF7cdOk5nG2pBBgk-s9KQ_XB6-aM

 

The minimum length of n-well is 12 lambda. Above, we observe lambda=0.30 um, or 300 nm. Our minimum length of n-well is then 3.6 um.

 

 

 

Selecting Length and Width

 

If we use the minimum length of n-well (3.6 um) as the width of our resistor, given that we want to achieve R = 10k, and we know from the C5 process that the sheet resistance of n-well is 796 ohms/sq, we can calculate our desired length by

 

 

 

 

Measuring Length and Width

 

However, we need our length to be a multiple of lambda. For this reason, we will use a length of 45.3 um, or 151 lambda. In doing so, we run our DRC, and there are no errors.

We can measure the length and width of the resistors (in mils) by pressing “k” to create a ruler.

 

https://lh5.googleusercontent.com/i9YO5MRK607i1YfpnaSLxbZblFnisv6ucwOT2BmPqpc_ciLnZCov85TwUgtl6mcXr_diDt1j7do_jaBP20p68NFldu3ylUZyZ1hsCjN8bGy13XadwqqsuVd4BfdSPnVmUX8s0jI    https://lh3.googleusercontent.com/7hpP4ft1YosUekDuHQtXofWUiDpcypFtLseGZWsKnWmv0KpCuQMQT-b_eCj63i1kIBJDtlfwZgDszqYS_d6OVwN6-45gM8Z93cFyZNOeBlYmN9NGAmKz2wEVixtcbhXtBPu_hPc      https://lh6.googleusercontent.com/f7wRPUxdrXBXxOob3leQxBEunUKeoJ3HoyRa00WHzmLATSnAFpH_osDbr3i_3AvqaOlj09sKl3BHPW3MA7nJChmn92cqDBpGgxS86q_SkrdZgYo6SyTAMiSprBwIriNDIALb-PU

 

 

After extracting the layout and achieving a resistance of 10.31k, we can backsolve to find the true value of Rsquare in cadence.

We can then recalculate our length using the newly calculated Rsquare, the minimum width 3.6um, and our desired 10k resistance.

 

 

But, since 43.9 is not a multiple of lambda, we will use 43.8 um for our length. Redrawing the n-well resistor to have length 43.8 um and width 3.6 um, our extracted view gives us a resistance of 9.964k, much closer to 10k than our previous 10.31k.

 

https://lh3.googleusercontent.com/gaQ7llz2WScMh8Duuv6G3lHwjXSkOO1ZJWfaDD5exakKugXqt6EIUU8wQOK7MJMW8a2XB27k4QgpU-Ar0EWGfWVB1TXv6m5Wc5QlsIoQ7ZSSWCMmXQgvdHh7IQuaqg_60o-gxdo   https://lh3.googleusercontent.com/o5EYa4RxBBy4q1koYIg8dlmvjNjiWbdrejqmD--XGsrN7wBRVB56u3xxWAqEqYqBZv2nnpODseDVUN93VZkGcSoI-DauTHEFXlnyFkT8EaanD2199tCqPAaM6IkZUUBmmiJnxJI

 

 

Layout of DAC Using 10k N-Well Resistor

 

When I first simulated the array of resistors, markers were placed between each of the resistors, marking n-well spacing errors. The minimum requirement for space between n-well, as is shown to the left, is 5.4 microns. After receiving the error, I spaced my resistors by 5.4 microns all the way down the array.

 

https://lh4.googleusercontent.com/YZbJC9w0F6eq0o81PZMGN2L3FlTxMNcyBgLKJwMj6prhdUd0ojcBwyNjKM9W-t_FCm_-25OXqpt16mqBcdgazCOh4qNu_KHmVVhL7vKfqsZNgqRqZilzmpWjTZBHw0V1poEK7Go        https://lh3.googleusercontent.com/lr0BCDaGBqKjuiHPDBYxsafIFu1H_-hFto74TM3fDswJjc7to33yUI16lXHsnFrtzF5Lb8kIuk9dgACPV-ieBaBPJDaG9nrfiL7F4_vuqZVx90GN1hSMHRd9Y2kjae0oQeh1nG8 

 

After wiring the resistors:

 

 https://lh4.googleusercontent.com/M7cfzUM__PUk2XFyPOYTP4AdiEEHtWW_Z6XCeozo9qpkAsjJUvpwXeFO73DzpamSpELDiHkyMp7Ym6AYPco2HeHhvxkBsMmDxcbBkO4coiGPUMVcdUxwlrhfqd7ujlhICbJS8Qk  https://lh5.googleusercontent.com/LabQ114QG-cOz7svmJXcdK420bGhOXQsYSjDPhokSQwzrJCMayUDuFzOaIIZG5Y4Y9F-mNW0pphJ4pNHA3gkj7UD4XtumtJbHYA_aPK8F6nIf11veBgZMkw7oVgQ9PUahvdcuwI

 

https://lh3.googleusercontent.com/0U9kd9_KBxQ4zAr0AA_hbwb-n9tQntABTVkFwZiLz8ANUODE6aGWdHVh3kOUQ1BT5jMGwp_c3Ygj-1DGosLi5r83eqndE04HF2pXGQFiLzVaQmmFNM82XUuRyeUbDY1K_U93iRc

         https://lh6.googleusercontent.com/8BW5UFEFpqTNknsOKiu3nxpZVhydMJJMV1x3eywd-S7F3hDcy__cUfLd_WqbjAwB_GtyXdiWzLyeFskHVGXY7d9R_-zeQIyL7k-4GzoLpJ-VBShPiseleiJmQbs4VhdMLqSrzRk

 

 

When we LVS the extracted view of the layout and the schematic of the DAC we created in lab 2,

we see from the output of the simulation that the net lists match, and the LVS is successful.




Pictured here is the extracted view of the layout, which shows the resistive property of each n-well resistor.

As we saw earlier, the resistance of each is 9.96k.

 

 

 

 

 

Simulation of DAC output from Lab 2

 

https://lh3.googleusercontent.com/pn0CAceqbiHS0team99snHbfwbdr7FjvFZWmOuEIR13nh2Th2vv69YzXKquTysHg8tjYAHVrJ5q91aV_6x-6SNrl8gxa6KINkIWr0HknuaajKOefMVDODB7kSKZO1eVKR-QsyNY

 

https://lh6.googleusercontent.com/cKvKvT_F-zmvPC5PqEZBeNkPvPi6Vfv4dHYavZv5qn6hoW3yuQLsQmaDtLZ_RM6397qW-T69y3SO0ChirDnKgvPvZcJG1ysYf9P-7QNRcjnLhV2ejTwBgNG6U7fgaK3qWAqetsw

 

 

 

 

Return to EE 421L Labs