Lab 5 - ECE 421L 

Authored by Antanasia Jones

jonesa20@unlv.nevada.edu

 

10/5/16

  

For this lab I had to create schematics and layouts for a CMOS inverter using NMOS and PMOS inverters.  

 

In the first part of the lab I designed a schematic for a CMOS inverter using a 12u/0.6u (=W/L) PMOS and a 6u/0.6u NMOS where the PMOS is connected to Vdd and the NMOS is connected to ground and the gates of both devices are connected to each other. The input being A and output being Ai. Then I created a symbol for the schematic where the input is A and the output is Ai. The images below shows the 12u/6u inverter and the symbol representing the inverter. 

 

 inverter_schematic.jpginverter_sym.jpg

                                           CMOS schematic 12u/6u                                                                                                      CMOS symbol 12u/6u  

 

I then had to design a similar schematic where the PMOS and NMOS were 4 times larger. This is done by using the multiplier in the PMOS/NMOS component properties and set M=4. Then I created a symbol for the schematic. The images below shows the 48u/24u inverter and the symbol representing the inverter. 

 
inverter_4_schematic.jpg    inverter_sym_48u_24u.jpg
                              CMOS schematic 48u/24u                                                                        CMOS symbol 48u/24u
 
For the next part of the lab I created a layout for the two CMOS inverters. Each layout having pins on the metal 1 layer of A, Ai, vdd! and gnd!, where vdd! and gnd! represent universal vdd and universal gnd. Below are images of the layouts and extracted views of each CMOS inverter.
 
                             inverter_layout.jpg  inverter_ex.jpg                  inverter_4_layout.jpg   inverter_4_ex.jpg
                               12u/6u inverter layout and extracted view                                                        48u/24u inverter layout and extracted view

I then performed DRC test on both inverter layouts to make sure all the rules were followed. And then I performed LVS on the schematics and the extracted views of each inverter. The images below show the DRC and LVS tests for the 12u/6u and the 48u/24u inverters
 
inverter_drc.jpg      inverter_LVS.jpg   
                          12u/6u inverter DRC test                                                                              12u/6u inverter LVS test
 

inverter_4_drc.jpg    inverter_4_LVS.jpg
             48u/12u inverter DRC test                                                                                             48u/24u inverter LVS test                           
 
In the final part of the lab I created a simulation circuit of both the 12u/6u inverter and the 48u/24u inverter driving a capacitive load having vlaues of 100fF, 1pF, 10pF and 100pF. Each capacitive load was simulated using the normal simulation tool and the Ultra-Sim tool, which is meant to provide a more accurate transient response. Below are the images of the schematics and the simulations of each capacitive load using the normal simulation tool and the Ultra-Sim tool. for each schematic.

                                                                                    sim_schematic.jpg
                                                                                                                 12u/6u inverter simulation circuit    
 
  100f.jpg  100f_ultra.jpg
                                                                   100fF                                                                                                                                       100f ultra-sim
 
1p.jpg 1p_ultra.jpg
                                                                          1pF                                                                                                                                         1pF ultra-sim
 
10p.jpg 10p_ultra.jpg
                                                                       10pF                                                                                                                                 10pF ultra-sim
 
100p.jpg 10p_ultra.jpg
                                                                     100pF                                                                                                                                        100pF ultra-sim
 
                                                                                    sim_schematic_4.jpg
                                                                                                                  48u/24u inverter simulation circuit
 
100f_4.jpg 100f_ultra_4.jpg
                                                                           100fF                                                                                                                                          100fF ultra-sim
 
 1p_4.jpg 1p_ultra_4.jpg
                                                                        1pF                                                                                                                                                 1pF ultra-sim
  
10p_4.jpg 10p_ultra_4.jpg
                                                                           10pF                                                                                                                                       10pF ultra-sim
 
  100p_4.jpg100p_ultra_4.jpg
                                                                             100pF                                                                                                                                        100pF ultra-sim

It should be noted that as the capacitor size increases the more attentuated the output signal becomes. This happens because with a larger capacitor the longer it takes to charge and discharge. So with a small capacitor, such as 100fF, the capacitor charges rather quickly on the falling edge of the input and discharges quickly on the rising edge. Where as with a later capacitor, such as 100pF, the capacitor takes more time to charge on the falling edge and to discharge on the rising edge. Also for this capacitve load it should be noted that unlike the capacitve loads it never completely discharges or charges due to there not being enough time between pulses to allow the capacitor to fully charge or discharge.

 

The zipfile containing all these cells are places here.

Return to EE 421L Labs