Project - EE 421L Fall 2015


Mario De La Torre

delatm2@unlv.nevada.edu

11/9/2015 

Zip folder containing Proj files found here

  

1. Design of an 8-bit resettable (input "clear") up/down counter. The outputs of your counter should be buffered before connecting to a pad.  The  8 bit up/ counter has 8 stages, each comprising of a D flip flop with clear and a 2 to 1 multiplexer to select the up/down operation (one bit up/down counter).  First stage is directly connected to the clock signal, the other 7 respond after additional delays.  For example,  stage 2 will change every 2 clock cycles, stage 3 every 4 clock cycles and so on.  

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre2_Onebit_counter_schem.JPG

   

One bit up/down counter.

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre2_Onebit_counter_sym.JPG


 

D flip flop with an active low clear.  A buffer was included to drive the next stage.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre1_dff_schem.JPG

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre1_dff_sym.JPG

 

Truth table.

ResetDCLOCKQQi
10Rising edge01
11Rising edge10
0XX01
 

D flip flop simulations

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre1_dff_sim.JPG

  

Using 8 of the one bit up/down counter we have and 8 bit counter that will count up 255.

   

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_schem.JPG

 

 Symbol

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_sym.JPG

 

Simulations.

Schematic

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_simUP_schem.JPG

    

    a. Counting up.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_simUP.JPG

 

    b. Counting down.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_simDown.JPG

 

    c. This simulation shows the counter counting up then reseting and then counts down.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre3_8bit_counter_simRes1.JPG

 

2. A 31-stage ring oscillator with a buffer for driving a 20 pF off-chip load.

  

31-stage ring oscillator schematic and symbol.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre4_osc_schem_sym.JPG

 

Buffer.  The following formula was use to design the buffer,  N = ln (Cload/Cin), where N is the number of stages, Cload is the load capacitance, and Cin is the input capacitance of one inverter.  For my 12u/6u inverter in the C5 process, Cin is 3/2 (18+9)fF= 40.5fF and Cout is 27fF.  N = ln (20pF/40.5fF)= 6.20 or 6 stages.  Using 8 for A the number of stages can be reduce to 3.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre4_buffer_schem.JPG http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre4_buffer_sym.JPG

   

The ring oscillator with the buffer driving a 20 pF capacitor.  Notice that the rise and fall edges are very sharp.  Without the buffer, the oscillator won't be avaible to drive this big capacitor.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre4_buffer_sim_schem.JPG

 

3. NAND and NOR gates using 6/0.6 NMOSs and PMOSs.  An inverter made with a 6/0.6 NMOS and a 12/0.6 PMOS.

 

NAND gate schematic and symbol.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre5_nand_schem_sym.JPG

 

NOR gate schematic and symbol.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre5_nor_schem_sym.JPG

 

Inverter schemactic and symbol.

Simulations of all gates.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre5_gates_schem_sym.JPG

 

4. Transistors, both PMOS and NMOS, measuring 6u/0.6u where all 4 terminals of each device are connected to bond pads (7 pads + common gnd pad).

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre7_probe_pads.JPG 

  

PMOS simulation.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre7_sim_pmos.JPG

 

NMOS simulation.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre7_sim_nmos.JPG

 

5. Using the 25k resistor laid out below and a 10k resistor implement a voltage divider (need only 1 more pad above the ones used for the 25k resistor) .  To calculate Vout, we use Vout/Vin=R1/R1+R2, Vout= 285mV.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre6_vol_div_sim_schem.JPG

6. A 25k resistor implemented using the n-well (connect between 2 pads but we also need a common gnd pad) .  Note that only one pad is need for the common gnd pad. This pad is used to ground the p-substrate and provide ground to each test circuit.


http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre6_R25_sym_schem.JPG


Post-Lab

Layout implementation

   

1. 8bit up/down counter layout.    

 

    a. DRC

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post1_8bit_counter_DRC.JPG

   

    b. LVS

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post1_8bit_counter_LVS.JPG

 

2. A 31-stage ring oscillator layout.    

  

    a. DRC

   

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post2_osc_DRC.JPG

 

    b. LVS

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post2_osc_LVS.JPG

  

3. A 3 stage buffer layout.    

 

    a. DRC

   

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post3_buffer_DRC.JPG

 

    b. LVS

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post3_buffer_LVS.JPG

 

4. NAND and NOR gates using 6/0.6 NMOSs and PMOSs layout.    

 

    a. DRC

   

NANDNOR
http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post4_nand_DRC.JPGhttp://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post4_nor_DRC.JPG

    b. LVS

  

NANDNOR
http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post4_nand_LVS.JPG
http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post4_nor_LVS.JPG

 

5. An inverter made with a 6/0.6 NMOS and a 12/0.6 PMOS layout.    

  

     LVS

 

 http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post5_inverter_LVS.JPG

 

6. Transistors, both PMOS and NMOS, measuring 6u/0.6u layout.    

 

LVS

NMOS
 
http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post6_nmos_LVS.JPG
 
PMOS
 
http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post6_pmos_LVS.JPG
 

7. Voltage divider 25k and 10k layout.    

 

    LVS 

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/post7_vol_div_LVS.JPG

  

Backing up my work.

1. A zip folder will be created Lab2.

 

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre0_zip.JPG

  

2. Then the zipped folder will be store on my google drive.

  

http://cmosedu.com/jbaker/courses/ee421L/f15/students/delatm2/proj/pre0_google.JPG

 

Return to delatm2 lab directory

 

Return to EE 421L Labs