Lab 8 - EE 420L 

Authored by Marco Muniz,

04/08/2019

  

Lab description

  

In this lab you will characterize the transistors in the CD4007 (not the CD4007UB chip) and generate SPICE Level=1 models. Assume that the MOSFETs will be used in the design of circuits powered by a single +5 V power supply. In other words, don't characterize the devices at higher than +5 V voltages or lower than ground potential.

    1. ID v. VGS (0 < VGS < 3 V) with VDS = 3 V 
    2. ID v. VDS (0 < VDS < 5 V) for VGS varying from 1 to 5 V in 1 V steps, and 
    3. ID v. VGS (0 < VGS < 5 V) with VDS = 5 V for VSB varying from 0 to 3 V in 1 V steps. 

_____________________________________________________________________________________________________________

   

                                             file:///C:/Users/mmuni/Pictures/Lab8/chip.JPG

  

**NOTE ALL CURRENT MEASUREMENTS ARE IN mA range.

  

EXPERIMENT 1 NMOS:

 

1. ID v. VGS, VGS varies from 0 to 3V, VDS = 3V

  

 To generate the ID vs. VGS plot, VGS is connected to the function generator with a waveform that varies from 0 to 3V, while VDS is set to 3V. From here, we placed the multimeter in series with the source of the mosfet to ground in order for us to get a current reading at each interval of VGS. 

  

  

Schematic:

                                                       file:///C:/Users/mmuni/Pictures/Lab8/nmos_cir1.JPG              file:///C:/Users/mmuni/Pictures/Lab8/nmos_sim1.JPG


  

Experimental Plot:

  

                                                      file:///C:/Users/mmuni/Pictures/Lab8/nmos1.JPG

  

  Comparing our simulated and experimental results, we can see that the plots have a similar VTO but our experimental reach a slightly higher current level at 3V. Experimentally, we see a current of 1.65mA but in the simulation, we were seeing a current of about 1.65mA. While the difference isn't very large, we adjusted our Kp to get a more exact comparison.

_____________________________________________________________________________________________________________

 

2. ID v. VDS, VDS varies from 0 to 5V, VGS values from 1 to 5V in 1V steps

  

To set up this circuit, we placed a voltage range of 0 to 5 V while the gate was supplied with 1 - 5 V in 1V increments. From there, we grounded the source and placed the ammeter in series with the drain in order to measure Id. Our current measurements were taken at each voltage increment of 0.1V and then plotted in excel.
   

Schematic:

  

                                                                file:///C:/Users/mmuni/Pictures/Lab8/nmos_cir2.JPG

       file:///C:/Users/mmuni/Pictures/Lab8/nmos_sim2.JPG

  

VGS 1 = Light Green

VGS 2 = Dark Blue

VGS 3 = Magenta

VGS 4 = Teal

VGS 5 = Purple

  

Experimental Plots:

   

 

VGS = 1

   

                                                  file:///C:/Users/mmuni/Pictures/Lab8/nmos2.JPG

  

VGS = 2

  

                                                  file:///C:/Users/mmuni/Pictures/Lab8/nmos3.JPG

  

VGS = 3

  

                                                 file:///C:/Users/mmuni/Pictures/Lab8/nmos4.JPG

  

  

VGS = 4

    

                                                 file:///C:/Users/mmuni/Pictures/Lab8/nmos5.JPG

  

VGS = 5

    

                                                  file:///C:/Users/mmuni/Pictures/Lab8/nmos6.JPG

    

Comparing our results, we see a saturation point of about 1.55-1.60mA which shows our simulation model operates correctly. Although, we did see a difference in the higher VSD points. Comparing our VGS=5 plots shows a current difference of about 2mA from the experimental (6mA) to the simulation (8mA)

_____________________________________________________________________________________________________________ 

Calculations Nmos Model:
A
ssume l = 5um and w = 500um, lets find parameters: VTO, GAMMA, KP, LAMBDA, and TOX

VTO 
Looking at part 1, we can estimate VTO = 1.45V, while data measured in part 2 and VGS is at 3V IDsat can bee seen as approximately  IDsat = 1.56mA

KP
Kpn = ID*2*(L/W)/(VGS-VTO)^2 = 1.56mA*2*0.01/(1.6)^2  then KPn = 12.11uA


Lambda
Lambda = slope/IDsat where slope = (1.6541mA - 1.56mA)/(5-1.5) = 0.02689mA/V. Then Lambda = 0.01723 A/V

TOX
tox = Eox/C'ox where Eox = Er*Eo = 3.9*8.85*10^(-18)F/um = 3.4515*10^(-17)F/um where C'ox = 15pF/(5*500*10^(-12)) = 0.667fF/um^2 , here we used 15pF for Cox from the datasheet of CD4007UBE.
resulting in tox = 51.74nm

GAMMA
g = sqr(2*q*Es*NA)/sqr(C'ox) = sqr(0.000496768) then gamma = 0.0222V
   

                                                                    file:///C:/Users/mmuni/Pictures/Lab8/nmos_model.JPG

_____________________________________________________________________________________________________________

  

3. ID v. VGS, VGS varies from 0 to 5V, VDS = 5V, and VSB changes from 0 to 3V in 1V steps.

    

For this circuit, we placed a 5V supply onto the drain and grounded the body while the source is supplied with a voltage of 0-3V in 1V increments. The gate voltage will be varied from 0-3V for VS=0, 1-4V for VS=1V, 2-5V for VS=2V, and 3-5V for VS=3V

  

Schematic: 
  

                                                          file:///C:/Users/mmuni/Pictures/Lab8/nmos_cir3.JPG

           file:///C:/Users/mmuni/Pictures/Lab8/nmos_sim3.JPG


Experimental: 

  

  file:///C:/Users/mmuni/Pictures/Lab8/nmos7.JPG  file:///C:/Users/mmuni/Pictures/Lab8/nmos8.JPG

                                file:///C:/Users/mmuni/Pictures/Lab8/nmos9.JPG

   

Overall, our waveforms had very similarly shapes but we did see some larger jumps in current in the simulated results compared to our experimental results such as the current points of VGS = 3.


 

_____________________________________________________________________________________________________________

  

EXPERIMENT 2 PMOS:

  

1. ID v. VGS, VGS varies from 0 to 3V, VDS = 3V

  

 To generate the ID vs. VGS plot, VGS is connected to the function generator with a waveform that varies from 0 to 3V, while VDS is set to 3V. From here, we placed the multimeter in series with the source of the mosfet to ground in order for us to get a current reading at each interval of VGS. 

  

Schematic:

 
                                                            file:///C:/Users/mmuni/Pictures/Lab8/pmos_cir1.JPG

         file:///C:/Users/mmuni/Pictures/Lab8/pmos_sim1.JPG 

  

Experimental Plot:

   

                                                     file:///C:/Users/mmuni/Pictures/Lab8/pmos1.JPG

  

                                                       

_____________________________________________________________________________________________________________ 

2. ID v. VDS, VDS varies from 0 to 5V, VGS values from 1 to 5V in 1V steps

 

Schematic:

  

                                                                  file:///C:/Users/mmuni/Pictures/Lab8/pmos_cir2.JPG

              file:///C:/Users/mmuni/Pictures/Lab8/pmos_sim2.JPG

  

VSG 1 = Purple

VSG 2 = Light Blue

VSG 3 = Magenta

VSG 4 = Dark Blue

VSG 5 = Light Green

  

Experimental Plots:

  

VSG = 1

  

                                               file:///C:/Users/mmuni/Pictures/Lab8/pmos2.JPG

  

VSG = 2

     

                                                file:///C:/Users/mmuni/Pictures/Lab8/pmos3.JPG

  

VSG = 3

   

                                               file:///C:/Users/mmuni/Pictures/Lab8/pmos4.JPG

  

VSG = 4

  

                                                file:///C:/Users/mmuni/Pictures/Lab8/pmos5.JPG  

  

VSG = 5

    

                                                file:///C:/Users/mmuni/Pictures/Lab8/pmos6.JPG

    

The main difference we saw between our simulated and experimental results was that the calculated VTO for the model might be slightly too high since we know for a fact we should have some current flowing at VSG = 2 from the experimental plots.

___________________________________________________________________________________________________________  

Calculations Pmos Model:
Assume l = 5um and w = 500um, lets find parameters: VTO, GAMMA, KP, LAMBDA, and TOX


VTO 
By observation of the data measured in part 1 VTO = -1.65V, while data measured in part 2 and VSG is at 3V IDsat can bee seen as approximately  IDsat = 0.90mA

KP
Kpn = ID*2*(L/W)/(VGS-VTO)^2 = 0.87mA*2*0.01/(1.6)^2  then KPn = 6.6uA


Lambda
Lambda = slope/IDsat where slope = (1.05mA - 0.87mA)/(5-2) = 0.06mA/V. Then Lambda = 0.063/V

TOX
tox = Eox/C'ox where Eox = Er*Eo = 3.9*8.85*10^(-18)F/um = 3.4515*10^(-17)F/um where C'ox = 15pF/(5*500*10^(-12)) = 0.667fF/um^2 , here we used 15pF for Cox from the datasheet of CD4007UBE.
resulting in tox = 51.74nm

GAMMA
g = sqr(2*q*Es*NA)/sqr(C'ox) = sqr(0.000496768) then gamma = 0.0222V

    

                                                               file:///C:/Users/mmuni/Pictures/Lab8/pmos_model.JPG

_____________________________________________________________________________________________________________
 

Experiment 3: Characterization of CMOS Inverter (CB4007UB)

  

                                                file:///C:/Users/mmuni/Pictures/Lab8/test.JPG

  

Schematic: 

   

                                       file:///C:/Users/mmuni/Pictures/Lab8/inverter_cir.JPG

         file:///C:/Users/mmuni/Pictures/Lab8/inverter_sim.JPG  

  

Experimental: 

 
 
                                                                file:///C:/Users/mmuni/Pictures/Lab8/rise%20time.JPG
 
Experimentally, we found a rise time of roughly 21nS. This value was well within the range for this model so we kept this measurement. However, when we simulated the inverter, we read roughly a rise of about 17ns so we were off by 4nS between our simulated to experimental values. This was acceptable and would need a small adjustment to Kp for better accuracy. 

  

 


 

Return to My Lab's 

  

Return to Student Directory

  

Return to Cmos Home