Lab 4 - EE 420L 

Authored by Marco Muņiz,

Email: munizm1@unlv.nevada.edu

02/24/19

   

  

Lab description

  

Again, this lab will utilize the LM324 op-amp (LM324.pdf).

For the following questions and experiments assume VCC+ = +5V and VCC- = 0V.

 

 

 

  

  

_________________________________________________________________________________________________________________

  

  

Part 1: 

  

 The bandwidth of an Op-Amp is a range of frequencies where the closed loop gain stays at the same value and acts constant. This can be seen easily in the topologies for inverting Op-Amps, in which we see a constant range then we begin to see a drop in the gain. This frequency is the bandwidth. The Gain Bandwidth Product "GBP" would be the closed loop gain times the bandwidth at that point. This value is considered a constant. For example, the GBP for an inverting Op-Amp with gain of one would be : (1*Bandwidth = GBP), where the GBP is equal to the frequency of the Op-Amp at unity gain, also known as the unity gain frequency "fun". 

   

From the data sheet of Op-Amp we are using, we get the open lood response. We can also see the GBP with a unity gain frequency "fun" is around 1Mhz.  

  

                             ../Pictures/Lab4/openloop_freq_resp.JPG    ../Pictures/Lab4/GBP.JPG

                             (Open Loop Frequency Resp. Plot)                                      (Unity Frequency for GBP)

   

  

In the case of the Non-Inverting Op-Amp, we can see calculations to estimate the bandwidth below. 

 
                                                                (Hand Calcs for BW estimate for Non-Inverting Topology)

                                                                           ../Pictures/Lab4/bw1.JPG

  

                   @ Gain = 1                                                                                                        @ Gain = 5

                  ../Pictures/Lab4/bw2.JPG                                                                             ../Pictures/Lab4/bw3.JPG              

     

                                                                                       @ Gain = 10

                                                                            ../Pictures/Lab4/bw4.JPG

  

  

 
Non-Inverting Op-Amp
 
                                                                                                            
  ../Pictures/Lab4/non_inverting_1.JPG
  ../Pictures/Lab4/non_inverting_5.JPG
                                              (Gain of 1)                                                                                                 (Gain of 5)

                                                     ../Pictures/Lab4/non_inverting_10.JPG
                                                                                                  (Gain of 10)
 

 
To determine the BW (bandwidth) for this Op-Amp at gains of 1, 5, and 10, we first set up the above circuits for a low input frequency so that we can see a clear and accurate gain. From this point, we will increase the frequency until we see the output drop to 70.7% of its original value, or a 3dB drop from its original value. The frequency were this occurs is the Bandwidth of the Op-Amp used for the current gain.
 
For the Oscilloscope images below, we will be showing the gain for low frequencys, as well as the gain for high frequencys point were we reach the bandwidth so that we can see a clear illustration of the difference. However, the gain seen in the oscilloscopes was fairly off from what we would expect from the estimates dont previously. The images still show a 3db drop from the low frequency gain to illustrate the bandwidth.
For the following images, the Blue channel is the Input and the Purple Channel is the Output wave.
 
@ Gain of 1
                                  (Low Frequency)                                                                                      (High Frequency)
  ../Pictures/Lab4/gain1low.PNG             ../Pictures/Lab4/gain1high.PNG     
 
@ Gain of 5
                                 (Low Frequency)                                                                                         (High Frequency)      
  ../Pictures/Lab4/gain1high.PNG          ../Pictures/Lab4/gain5high.PNG
 
@Gain of 10
   
                                         (Low Frequency)                                                                                                               (High Frequency)
   ../Pictures/Lab4/gain10low.PNG            ../Pictures/Lab4/gain10high.PNG
                                                                                                                                              (Sorry! did not notice till after we had already left lab)
 
                                                          ../Pictures/Lab4/non_inverting_table.JPG
 
From the table, we can see how different our experimental values diverged from out estimated calculations with some cases almost twice the bandwidth. A reason for this variation would be the +/- 10 %  Tolerance in our resistors which would make the gain more, or less that what we believe it is. Additionally, we might be seeing this large variation due to our low VCC voltage and unwanted capacitance from the lab equiptment.
 

 
______________________________________________________________________________________________________________________________________________
 
Part 2:
 
 
Below, we have the schematics used to measure the bandwidth for the Inverting Op-Amp topology. As in the previous part, we will show two Oscilloscope readings to show the an accurate gain at low frequencys, as well as for high frequency.
 
                                    Gain of -1                                                                                                         Gain of -5
           ../Pictures/Lab4/inverting_1.JPG                      ../Pictures/Lab4/inverting_5.JPG
                                                                              
                                                                                                  Gain of -10
                                                              ../Pictures/Lab4/inverting_10.JPG
 
As with the Non-Inverting topology, these oscilloscope readings show the gain of the Op-Amp at low frequencys where we can clearly see the gain. Also, we show the high frequency point where we reach 70.7% of our output signal to illustrate the Bandwidth.
For the following images, the Blue channel is the Input and the Purple Channel is the Output wave. 
 
@ Gain of -1
                                  (Low Frequency)                                                                                        (High Frequency)
  ../Pictures/Lab4/gain-1low.PNG             ../Pictures/Lab4/gain-1high.PNG
 
@ Gain of -5
                                 (Low Frequency)                                                                                           (High Frequency)
  ../Pictures/Lab4/gain-5low.PNG             ../Pictures/Lab4/gain-5high.PNG
 
@ Gain of -10
                                 (Low Frequency)                                                                                            (High Frequnecy)
  ../Pictures/Lab4/gain-10low.PNG              ../Pictures/Lab4/gain-10high.PNG
                                 
                                           ../Pictures/Lab4/inverting_table.JPG
 
From the table for the Inverting Op-Amp, we begin to see much less variation between our estimated bandwidth values and our experimental values. I would also attribute the disparity in our bandwidths to inaccurate resistors, a low VCC voltage or unwanted capacitance from the lab equipment/cables.
 
 
_________________________________________________________________________________________________________________
 
 
Part 3:
 
     
For Op-Amps, the output voltage can only change at a specific rate. This rate
is called the "Slew Rate" of the Op-Amp. The Slew Rate for the Op-Amp used in this lab is found on the provided data sheet plot seen below. Additionally, we are shown in the data sheet how the slew rate is measured in what is known as a "Voltage follower" setup seen below.
 
                                     ../Pictures/Lab4/slew_rate.JPG
 
                         ../Pictures/Lab4/voltage_follower.JPG                                              ../Pictures/Lab4/voltage_follower_cir.JPG
                            (Voltage Follower Response)                                                               (Voltage Follower Setup)
 
 
For the first experiment, we set up the voltage follower circuit with the input as a Square Wave. This set up will show us the Slew Rate directly since the output will not have a fast edge, like the square wave input, but rather the slanted rise of the output trying to change as quickly as it can.
 
          file:///C:/Users/mmuni/Pictures/Lab4/square1.JPG            file:///C:/Users/mmuni/Pictures/Lab4/square1.JPG
                                      (Square Input)                                                                                 (Sine Input)
   
We calculate the Slew Rate from by dividing the change in voltage(Line Slope) by the change in time. Using the values from the oscilloscope plots, we get roughly [ .5V/1.319us ] = 0.38V/us. This Value is acceptably close to the stated Slew rate, in the Data sheet plot of .4V/us, shown above.
 
For the sine wave input, we see that the amplitude and slope increase in unison. However, if we input a wave with a slope thats much greated than the Op-Amp slew rate, our output begins to look erratic due to the Op-Amp trying to catch up to the rate of change of the input signal but not being able to. 

  

_________________________________________________________________________________________________________________     

Back up:  

  

  

../Pictures/Lab4/backup.JPG 

  

  

  

Return to My Lab's

  

Return to Student Directory

  

Return to CMOShome