Lab 4 - EE 420L 

Desi Battle, battled@unlv.nevada.edu

2/22/2018

OP-AMPS II: G*BW and slewing


lab4_ds_fwbprod.png

Using this chart found on pg 6/13 of the LM324 datasheet pdf I estimated the

bandwidth by noting the intersection of the given gain and the bandwidth.


Since the Gain Bandwidth product is a constant,  once we find the 

X-intercept, or the bandwidth for a gain of 1 (0 dB), we can use that value 

to estimate the other two bandwidths since the gain is known.

Why DB? 

While the equation (dB) = 20log(Vo/Vin) generates a value for gain in decibals, it doesn't really explain why.
We use dB for frequency response plots because the value of the gain exponentially falls off with increased frequency.
To make the visualization easier to represent/understand we use logarithmic axes making the actual plot linear.

GainBandwidthBandwidth (estimated)Gain * BandwidthGain * Bandwidth (est)
1?700KHz?700 K
5?120 KHz?700 K
10?70 KHz?700 K
-1?700 KHz?700 K
-5?140 KHz?700 K
-10?70 KHz?700 K


EXPERIMENT 1


lab4_exp1_schems/lab4_exp1_nigen_schem.JPG
Schematic used for non-inverting bandwidth experiments.

ExperimentRF Value (ohms)Gain produced (Vout/Vin)
101
240K5
390K10


Steps:
  1. Place components on breadboard as drafted above
  2. Use an oscilloscope to show the ac source and Vout at f = 1kHz and verify expected closed-loop gain
  3. Increase frequency until Vout is 0.707 times its original value and record this value as the 3db frequency (the frequency where Z{Re} = Z{Im})
Repeat steps 1-3 for the six different gains listed in the table.

lab4_exp1_pics/lab4_exp1_noninv/lab4_exp1_noinv1_f0.jpglab4_exp1_pics/lab4_exp1_noninv/lab4_exp1_noinv1_f3db.JPG

Vout = Vin ; f = 1kHZ                                                                f3db = 590KHz


Start at 1KHz, increase until :
Vout = 220 * 0.707 =  156 mV or about 590 KHz






lab4_exp1_schems/lab4_exp1_noinv5_f0.JPGlab4_exp1_schems/lab4_exp1_noinv5_f3db.JPG

Vout = 5*Vin ; f = 1kHZ                                                           f3db = 177KHz

Start at 1KHz, increase until :
Vout = 900 * 0.707 =  636 mV or about 177 KHz





lab4_exp1_pics/lab4_exp1_noninv/lab4_exp1_noinv10_f0.JPGlab4_exp1_pics/lab4_exp1_noninv/lab4_exp1_noinv10_f3db.JPG

Vout = 10*Vin ; f = 1kHZ                                                           f3db = 98 KHz

Start at 1KHz, increase until :
Vout =1.4 * 0.707 =  1.01 V or about 98 KHz


GainBandwidthBandwidth (estimated)Gain * BandwidthGain * Bandwidth (est)
1590 KHz700KHz590 K700 K
5177 KHz120 KHz885 K700 K
1098 KHz70 KHz980  K700 K
-1?700 KHz?700 K
-5?140 KHz?700 K
-10?70 KHz?700 K

Table Summarizing results for noninverting topology





lab4_exp1_schems/lab4_exp1_invgen_schem.JPG

Schematic used for inverting bandwidth experiments.

ExperimentRF Value (ohms)Gain produced (Vout/Vin)
110/k-1
250K-5
3100K-10


lab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv1_f0.JPGlab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv1_f0.JPG
Vout = -Vin ; f = 1kHZ                                                           f3db = 640KHz


Start at 1KHz, increase until :
Vout =224* 0.707 =  158 mV or about 640 KHz





lab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv5_f0.JPGlab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv5_f3db.JPG
Vout = -5*Vin ; f = 1kHZ                                                           f3db = 140KHz

Start at 1KHz, increase until :
Vout =1.04* 0.707 =  735 mV or about 140 KHz







lab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv10_f0.JPGlab4_exp1_pics/lab4_exp1_inv/lab4_exp1_inv10_f3db.JPG
Vout = -Vin ; f = 1kHZ                                                           f3db = 65KHz


Start at 1KHz, increase until :
Vout =224* 0.707 =  1.47 mV or about 65 KHz




GainBandwidthBandwidth (estimated)Gain * BandwidthGain * Bandwidth (est)
1590 KHz700KHz590 K700 K
5177 KHz120 KHz885 K700 K
1098 KHz70 KHz980  K700 K
-1640 KHz700 KHz640 K700 K
-5140 KHz140 KHz700 K700 K
-1065 KHz70 KHz650 K700 K
Summary of experiment results.

Discuss:
Comparing the inverting and noninverting topologies, we see that the Gain*Bandwidth product of the inverting topology stayed fairly close to
the predicted 700K, while that of the noninverting topology ranged wildly from 590K to 980K.  I believe input offset voltage and
limitations of the
resolution of the oscilloscope mainly attributed to these errors.

If we take the average of all the Gain*Bandwidth products we recorded we get 740K
, 40K or 6% off from our 700K estimate,
but since the estimate just serves the purpose of a starting reference point when choosing frequencies to probe with experimentally I find the %error to be acceptable.


  • EXPERIMENT 2


  • To measure slew rate first we reconfigure our LM324 to be non-inverting with a gain of 1 (unity follower)

    First lets use a Sine wave to get our measurement.

    Start by setting the input to a 200 mV, 250KHz sine wave  and ensure the output is following exactly (1)
    Next slowly increase the amplitude (2a).  Stop once you reach a point where further increasing the input amplitude does not increase the output. (2b)
    Finally, using the scope cursor, measure the slope of output. This is your measured slew rate. (3)
    lab4_exp2/lab4_exp2_Sineslew1.JPGlab4_exp2/lab4_exp2_Sineslew2.JPGlab4_exp2/lab4_exp2_Sineslew4.JPG          
                                                        (1)                                                                                                (2a)                                                                                                    (2b)                

    lab4_exp2/lab4_exp2_Sineslew5.JPG
                                                    (3)
    dV = 280 mV   ; dt = 960 nS

    Slew Rate = dV/dt = 284mV/960nS or roughly 0.3 V/us


    Next, we measure the slew rate again, but this time using a pulse input instead of a sine wave.

    Begin by taking the sine source from our last measurement and change it to a pulse, then set the pulse width to 20us and verify output is as expected (1)
    increase the frequency until you can visually detect a difference between the input and output rise times. (2)
    Using the measure function, calculate the rise time, then divide 0.8Vo by the rise time to measure the slew rate (3)

    lab4_exp2/lab4_exp2_Pulseslew1.JPGlab4_exp2/lab4_exp2_Pulseslew2.JPG
                                                        (1)                                                                                                    (2)

    lab4_exp2/lab4_exp2_Pulseslew2.JPG  
                                                (3)
    Rise = 550 ns     ; Vo  = 220mV

    Slew Rate = Vo/Rise = 0.4V/uS

    MethodResults
    Sine Input0.3 V/uS
    Pulse Input0.4 V/uS
    Data sheet0.4 V/uS

    Discuss:
        Looking back at the experiment using the Sine input, I notice that my error is likely introduced by erroneous measuring techniques.
    The peak voltage I measure contains portions of the sine wave where the dV/dt is less than maximum rate of change, resulting in
    an answer less than other methods suggest


    Conclusion:
        After performing this week's lab I now have the understanding that the slew rate is essentially the limiting factor for the bandwidth of a
     configuration.  It now makes qualitative sense that for a given frequency, a given configuration will have lower bandwidth for higher gains.  
     If the op-amp output can just barely produce a 100mV sine wave with a gain of 1 at unity frequency, attempting to produce  a larger signal
     wont change the output, since the output slew rate has already been reached a larger signal cannot be generated with the given frequency.

    Return to labs