Lab 5 - EE 420L 

Author: Dane Gentry

Email: gentryd2@unlv.nevada.edu

March 9, 2016

   

Op-Amps III: The Op-Amp Integrator

       

Click on any picture for its full size!

   

Pre-lab work

Lab Description

Lab Requirements

For the following questions and experiments assume VCC+ = +5V and VCC- = 0V.
         
Part 1: 
       

                      Hand Calculations and Explanation

 http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/Hand%20Calc's/1.JPG

   

                      LTspice Schematic                                                                    LTspice Simulation (Ft = 157 Hz)

http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Schem's/1.JPG            http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Sim's/1.JPG    

     

Part 2:

    

Experimental Results

                    Sinusoidal Signal (Ft = 159 Hz)                                                                 Square Wave Signal (Ft = 159  Hz)

http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Osc/Sin.JPG        http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Osc/Square%20Triangle.JPG

   
Conclusion

The calculated unity-gain frequency is Ft = 159 Hz. The sinusoidal signal shown above displays input and output signals with peak values that

are approximately equal. The square wave signal shown above, however, displays an output (triangle wave) that has a peak value greater than

the input (notice the different voltage scales). The two peak values for the square wave signal are nonetheless the same order of magnitude.

In addition, both of the images above display an approximate 90 degree phase shift as expected from the hand calculations.

   

Part 3:

   

                   Hand Calculations

http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/Hand%20Calc's/2.JPG

   

                    LTspice Schematic                                                                                      LTspice Simulation

http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Schem's/2.JPG           http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Sim's/2.JPG

     

                               Experimental Results

http://cmosedu.com/jbaker/courses/ee420L/s16/students/gentryd2/lab5/SS's/Osc/3.JPG

     

Conclusion

The triangle-wave output did not get as close to the power supply rails as expected, most likely due to manufacture defects/inconsistencies

or other flaws in the op amp. It is noted that in order to avoid an excessive DC offset, the 2.5 Vm voltage must be very close to the 2.5 Vin voltage.

By using a smaller capacitor value and thus calculating a higher value for the resistor, the swing of the output could theoretically increase.

    

Lab Conclusion

This lab demonstrated the operation and use of op-amp integrators, specifically in integrating a square wave input signal in order to produce a triangle-wave

output. The experiments in this lab provided excellent experience in how to design, build, and utilize an integrator to produce a triangle wave output from a

square wave input, and all experiments in this lab were performed with little difficulty and few encountered problems.

   

   

Return to EE 420 Labs