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Problem 32.1:

Show the details and assumptions leading to Eq. 32.1:

Eq. 32.1:  H(z) = (z ^ -1) / ( 1 – (z ^ -1) )

Note:  Eq. 32.1 is the transfer function of the Discrete Analog Integrator (DAI) in example 32.1.

Answer:

The derivation of the transfer function for a DAI, when the phee_1 switches are closed, is shown in
Eq. 31.130 on page 137.

Eq. 31.130:  Vout(z) = CI / CF * ( V1(z) * (z ^ -1) – V2(z) * (z ^ -1/2) ) / ( 1 – (z ^ -1) )

In Fig. 32.3, all voltages are relevant to ground.  In Eq. 31.130, Vout, V1, and V2 are all relevant to VCM.
To use Eq 31.130 on Fig 32.3 all the voltages have to be converted from relative to ground to relative to
VCM by subtracting VCM from each one in Fig 32.3.  So if V2=VCM in Fig 32.3, subtracting VCM from
it to convert; it would be used as 0V in Eq 31.130.

If the values C1=1pF, CF=1pF, and V2(z)=0 are plugged into Eq. 31.130 the result is:

Vout(z) = Vin(z) * ( z ^ -1) / ( 1 – (z ^ -1) )

Since H(z) = Vout(z) / Vin(z), It can be seen from the above equation that:

H(z) = (z ^ -1) / ( 1 – (z ^ -1) )

So the assumptions leading up to Eq. 32.1 are that the phee_1 switches are closed (instead of the phee_2
switches) and that Vout, V1, and V2 are all relevant to VCM in Eq. 31.130.
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32.2 Would it be possible to operate the DAI of Fig. 32.3 without a 0.75 V
supply?  Give an example.  Show simulations with the output initially at
0.75 V and the same input used to generate Fig. 32.4.  Are the DAI
outputs the same?

It is possible to operate the DAI shown in Fig. 32.3 without VCM set to the
midpoint between Vcc and Vss.  For example, the VCM node may be connected to
Vss, with the condition that the input must now swing about Vss (the new VCM) in
order for an accurate average to be generated.  In this case, the op-amp attempts to
force the negative terminal to stay at Vss.  Fig. 1 shows that the integration
remains the same, with the change in the VCM node causing an offset.

Figure 1  ADI waveforms with VCM set to 0.75 V (left) and 0 V (right).



To force the op-amp output to 0.75 V, the following line was added before the
transient analysis control line

.ic v(Voutop)=0.75

It is important to understand that the initial condition of the output node will
create an offset in the output waveform.  The reason for this is that, regardless of
the initial output condition, the input signal will control the direction of the
integration.  Fig. 2 shows the output waveform with the initial condition set to
zero (the default) and with the output initially set at 0.75 V.  Notice that the output
has the same shape, but is offset by 0.75 V.  Of course, if this circuit were realized
using an op-amp with limitations on the output swing, the output would hit the
supply rail.  The initial output condition must be considered in practical
implementations of the ADI.

If the integrator were used in a feedback loop, such as a NS modulator, the initial
conditions become irrelevant after a few clock cycles, because the integrator
output will drift toward the center of the supply rails.

Figure 2  ADI waveforms with op-amp output initial condition set at 0 V (left) and 0.75 V (right).
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32.3 Show the derivation of Eq. (32.4) from the block diagram shown in Fig. 32.6.

Answer:  Shown below is a re-creation of figure 32.6

Equation 31.138 describes the behavior of this noise shaping modulator and is given here:
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In the figure above, B(z) = 1 and A(z) a simple integrator with a delay of z-1.  Inserting
these values into the equation given above yields:
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This, in turn, simplifies to:
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Which then becomes equation 32.4:
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32.4 In the basic NS modulator shown in Fig. 32.7 what component serves as the 

ADC?  What component serves as the DAC? 
 

The clocked comparator serves as both the ADC and DAC.  This is possible, 
because the NS modulator implementation uses a 1-bit ADC and a 1-bit DAC as 
seen in figure 32.6.   
 
In figure 32.7, the comparator compares the output of the integrator to Vcm.  The 
output of the comparator is then either a logic 0 or a logic 1, the ADC stage.  This 
logic 0 is simply 0V, and the logic 1 is VDD.  Therefore, no additional data 
converting is necessary, and the output of the comparator is also used as the 
output of a 1-bit DAC.    



1

Gexin

Problem for 32.5:
Show, using timing diagrams, how Eq.(32.5) is correct.

Solution for 32.5:

The timing diagram is shown below:

In the following discussion, the quantization noise is not taken into consideration, i.e.
Here we assume the ADC input is equal to the ADC output.
When 1φ  is on at ( ) sTn ⋅− 1 , the charge on the inC  is:

( )[ ]( )sinCMinin TnVVCQ 11 −−⋅=
Since time between 1φ  going low and 2φ  going high is small, that is,
Right after 1φ  is off, 2φ  is on immediately, during the 2φ  is on, inC  will be charged to:

( )[ ]( )soutCMinin TnVVCQ 12 −−⋅=
The charge change on the inC  is:

( )[ ] ( )[ ]( )soutsininininin TnVTnVCQQQ ⋅−−⋅−=−=∆ 1112                 (1)

During the 2φ  is on, the charge change on fC  is:

( )[ ] ( )[ ]( )sADCinsADCinff TnVTnVCQ ⋅−−⋅−⋅=∆ 21                           (2)

The charge change on inC  should be equal to the charge change on the fC , that is:

inf QQ ∆=∆                                                                                        (3)

Since the comparator is clocked by 1φ , the ADC output is sT  delay than ADC input,
Which means:

( )[ ] [ ]sADCoutsADCin TnVTnV ⋅=⋅−1

( )[ ] ( )[ ]sADCoutsADCin TnVTnV ⋅−=⋅− 12
Thus (2) becomes:

( ) ( )[ ]( )sADCoutsADCoutff TnVTnVCQ ⋅−−⋅⋅=∆ 1

Thus from (3), we get:
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To represent this equation in the Z domain (Here inf CC = ):

Desired ADC output = ( )outin VV
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Problem 32.6
Question:  Show, using SPICE simulations, how increasing the RC circuit’s time constant
in Fig. 32.10 will remove additional modulation noise making the output smoother.  What
happens to the amplitude of the desired signal?

Answer:  Fig. 32.10 shows the original waveform with R = 1 kΩ and C = 100 pF, where
the time constant equals the product of R and C.

The following plot shows the result of tripling the RC time constant of the previous plot.



The next plot has an RC time constant with a value of five times that of its original value.

Clearly, these plots indicate that as RC increases the plots become smoother, however the
peak amplitude simultaneously diminishes.
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Problem 32.7
Question:  Show the spectrums (modulator input, output, and output after filtering) of the
signals in question 32.6.  Discuss what the spectrums indicate.

Answer:  The spectrum of input is shown below.  Note that the spectrum only contains
the single, fundamental tone.

The output spectrum is shown below with the filtering determined by the R and C;
namely, R = 1kΩ and C = 100 pF.  Note that the noise rolls-off with frequency and the
noise peak is greater than -40 dB.



The following plot shows the output when the RC time constant is tripled.  Note
that the noise peak is less than -40 dB.

The next plot shows that the noise peak decreases further.  In this case, the RC
time constant is five times that of the original.

The three previous plots illustrate that as the time constant increases the noise
peak drops, and the signal-to-noise ratio (SNR) increases.  This is expected since the
time-domain outputs are smoother (see Problem 32.6.)



Gexin

Problem 32.8: Explain how the quantizer in fig. 32.12 functions.

Solution for 32.8:

The basic idea for this fig.32.12 is that:
(1) The digital word must be represented by 2’s complementary format before it can be

used as an input to an integrator, which means, in this figure, the input ( )zX  and the
MUX output should be 2’s complementary format.

(2) MSB, the select control signal for MUX, is just the MSB of the integrator output
represented in Binary offset format. Notice: the integrator feed back signal (not the
MUX output), used for integration, is represented by 2’s complementary format, that
is, the integrator output has been changed to Binary offset format before it’s MSB is
used in MUX.

Here is the binary offset representation for +refV , CMV , and −refV :

+refV          11111K

CMV          01000K

−refV          00000K

Here is the 2’s complementary representation for +refV , CMV , and −refV :

+refV          10111K

CMV          00000K

−refV          01000K

The algorithm for quantization is that when the input value of quantizer is greater than

CMV , then output of the quantizer should be DDV , that is, 10111K  in 2’s complementary.

When the input value is less than CMV , then output should be ground, that is, 01000K  in
2’s complementary.

In fig. 32.12, when the accumulator’s output is greater than CMV , then the MSB for
accumulator output is ‘1’ (in Binary offset format), then the MUX output will be

10111K . When the accumulator’s output is less than CMV , then the MSB for
accumulator output (in 2’s complementary) is ‘0’, then the MUX output will be

01000K .
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32.9 What are we assuming about an input signal if the modulation noise follows Eq. 

32.7? 
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The assumptions made about the input signal in Equation 32.7 relate to the 
derivation of the noise spectral density equation, 
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In the derivation below two assumptions are made.  First it is assumed the output 
of the ADC is filtered through a low-pass filter band limiting the noise power.  
Worse case the bandwidth is limited to the Nyquist frequency fs/2.  Thus integral 
is evaluated between 0 and fs/2.   
 
Second it is assumed that Bennett’s criteria holds and that the voltage spectrum is 
truly flat.  In other words that the noise probability density function for 
quantization noise is truly random and falls in the range of ±0.5 LSB, defined by 
Figure 30.47. 
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32.10 What is the magnitude of Eq. (32.7)?

Answer:  Equation 32.7 is shown here:
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Question 32.11:

What is the difference between quantization noise and modulation noise?

Answer:

Modulation noise is the quantization noise after being differentiated by a modulator.



32.12 Show the steps and assumptions leading to equation (32.15).

              The frequency response of a differentiator is )2cos1(2
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f
π− .
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Question: #32.13

Is the statement on page 163 that “every doubling in the oversampling ratio
results in 1.5 bits increase in resolution” really true if K is small (say 8 or 16)?
Explain?

Solution:

Ideal SNR for a first order noise shaping data converter is:

KNSNRideal log3017.576.102.6 +−+=  (in dB)                 (32.17)

This results in a 1.5 bit increase, (Ninc), for every doubling of sampling ratio, K.
The equation is accurate for all integer values of K > = 2. It may not be practical
or useful to  implement a NS Data converter for oversampling ratio’s less than 8.
The resulting equation to find the increase in the number of bits determined from
the oversampling ratio, K, is:

                                         
02.6

17.5log30 −⋅= K
Ninc                                         (32.19)

shows that for all integer oversampling values of K>=2, Equation (32.17) is valid.
Again, this is not to say that implementing a NS Data Converter is worthwhile for
values of K less than 8, but the above equation is still valid for K>=2.



32.14 Does noise-shaping work for DC input signals? If so, how?

Solution: Yes, noise-shaping does work for DC input signals. Noise-shaping techniques
can be used to modulate a DC input signal to create a digital representation of that DC
input. The corresponding bandwidth of the resulting signal would need to be limited to
get rid of the higher frequency modulation noise. Since the input bandwidth is just DC,
the output signal should be purposely reduced because the higher frequencies will have
more noise associated with it.
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Question 32.15

Show the steps leading up to Eq. (32.25).

Equation 32.25 is the RMS modulation noise error of a first order (M=1) noise shaping converter system
with a second order (L=2) sinc averaging filter.  It’s derivation starts with equation 32.22:

      fs/2

V2
Qe,RMS = 2 � |NTF(f)|2 . |VQe(f)|2 . |H(f)|2 . df.

      0

This assumes that the noise is bandlimited to fs / 2 and that the integrand represents the square magnitude of
the noise in the system.  From equation 32.10:

|NTF(f)|2 . |VQe(f)|2  = V2
LSB / (12fs) * 2 * (1 - cos (2ðf / fs)),

and using half angle identity:

sin2 x = ½ * (1 - cos 2x),

and using equation 31.93 for a sinc filter with L = 1:

|H(f)| = 1/K * sin (Kðf / fs) / sin (ðf / fs),

Equation 32.22 can be simplified to equation 32.23:

          fs/2

V2
Qe,RMS = V2

LSB / (12fs) * 8/K4 * � sin4 (Kðf / fs) / sin2 (ðf / fs) . df.
           0

If we let è = ðf / fs, then df = dè * fs/ð; and if upper limit f = fs/2, upper limit è = ð(fs/2) / fs = ð/2.
Equation 32.23 can be written as equation 32.24:

   ð/2

V2
Qe,RMS = V2

LSB / (12fs) * 8/K4 * fs/ð � sin4 Kè / sin2 è . dè.
                  0

From using the definite integral formula shown in equation 32.99:
ð/2    M
� sin2(M+1) (Kè) / sin2M è . dè = K * ð/2 * �  (2m-1)/2m
0   m=1

where M = 1, the integral in equation 32.24 evaluates to K* ð / 4.  Simplifying and taking the square root,
equation 32.24 can be written as equation 32.25:

VQe,RMS = VLSB / SQRT(12) * SQRT(2) / K3/2.
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What is the impulse response of
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Problem 32.17  Regenerate Fig. 32.23 if L=3.  What is the droop at B?

The SPICE listing for the figure below is called prob_32_17.cir.

Using Fig. 31.46 from Chapter 31,

 Main lobe     
----------------  ≈ L . 13 dB for K ≥ 8 = 3x13= 39 dB.
First side lobe

The droop at the bandwidth B= 3.125 MHz is L . (-3.9) dB = -11.7 dB as shown below.
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32.18 Is it possible to eliminate the op-amp in Fig. 32.24 and use the following
topology?  Comment on the problems associated with this topology.

It is possible to eliminate the op-amp in Fig. 32.24, replacing the active
integrating function with a simple passive function.  The RC time constant
remains the same, but the virtual ground that was created by the op-amp output is
no longer present.  This reduces the effectiveness of the integrator, as the
integration will not be able to reach as high of values.  In effect, the virtual ground
on the op-amp output allows the charge to be pumped higher and higher, always
referencing the current value to the previous integration value.  The passive
solution will always refer the current integration value to the system ground,
eliminating the charge-pumping effect.

With a less effective integration the system’s dynamic range is reduced.  Also, if
the RC time constant were increased to improve the dynamic range, the
requirements on the comparator would increase.  See the simulation results of
Question 32.19 for further details.
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32.19 Simulate the operation of the circuit shown in Fig. 32.94.

Before simulating the circuit of Fig. 32.94, it is useful to have simulated results of
the analog NS modulator of Fig. 32.24.  The SPICE netlist is shown in Fig. 1.
Note that the ideal inverter is implemented in the same way as an ideal
comparator - with two switches.

For proper behavior and to ensure that the integrator output does not exceed the
supply rails, the RC time constant must adhere to Eq. 32.33.  With sf = 100MHz,
and the feedback capacitor set to 1pF, the total R must be

Ω=
⋅

= K
Cf

R
s

101

This is accomplished by setting each resistor to 20K ohms.  If the resistor values
are set too low, the integrator output will exceed the supply rails (see Fig. 2).
With the resistors properly set, the output is comparable to that of the discrete
modulator (see Fig. 3 and Fig. 4).



* Question 32.19 CMOS: Mixed-Signal Circuit Design *
* Analog NS modulator, using ideal op-amp

.tran 2n 2000n 0 2n UIC

*WinSPICE command scripts
*#destroy all
*#run
*#plot Vout Vin Voutop yl -0.5 2.0

*Input power and references
VDD VDD 0 DC 1.5
Vtrip Vtrip 0 DC 0.75
VCM VCM 0 DC 0.75

*Input Signal
Vin    Vin   0 DC 0 Sin 0.75 0.7 500k

*Clock Signal
Vphi1  phi1  0 DC 0  Pulse 0 1.5   0    200p  200p  4n 10n
R1 phi1 0 1MEG

*Use a VCVS for the op-amp
Eopamp Voutop 0 VCM Vinm 100MEG

*Ideal inverter
S8 VDD Vinvout VTRIP Vout switmod
S9 0 Vinvout Vout VTRIP switmod

*Setup feedback capacitor
CF Voutop Vinm 1p

*Setup summing resistors
R3 Vin Vinm 20k
R4 Vinvout Vinm 20k

*clocked comparator implementation
XSH VDD VTRIP Voutop Outsh phi1 SAMPHOLD
S6 VDD Vout VCM Outsh switmod
S7 0 Vout Outsh VCM switmod

.model switmod SW RON=0.1

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1  Vinbuf  VinS  VTRIP CLOCK switmod
Cs1  VinS 0 1e-10
S2  VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW  
.ends
.end

Figure 1  SPICE netlist of analog NS modulator with ideal op-amp shown in Fig. 32.24.



To simulate the circuit of Fig. 32.94, the ideal op-amp is removed, the comparator
polarity is switched, and the feedback capacitor is tied to ground, providing
single-pole low-pass filtering of the sum of the input and the fed-back signal.
Note that this eliminates the ‘virtual’ ground that was provided at the output node
of the op-amp.

The netlist of the NS modulator of Fig. 32.94 is shown in Fig. 5.  The simulation
result with the resistors set to 20K is shown in Fig. 6.  Note that the modulator
output is oscillating more quickly, showing that the dynamic range has been
reduced.  In other words, the input swing needs be greater for the modulator to
reach its maximum range.  This can be attributed to the fact that because the
virtual ground is lost, the capacitor charge is always referenced to ground and
therefore the sum is not integrated as well as with the op-amp implementation.

Figure 2  Simulation results of analog NS modulator
of Fig. 32.24 with R values set to 10K each.

Figure 3  Simulation results of discrete modulator of
Fig. 32.7. (This is the same as Fig. 32.8.)

Figure 4  Simulation results of analog NS modulator
of Fig. 32.24 with R values set to 20K each.



* Question 32.19 CMOS: Mixed-Signal Circuit Design *
* Analog NS modulator, using RC feedback

.tran 2n 2000n 0 2n UIC

*WinSPICE command scripts
*#destroy all
*#run
*#plot Vout Vin Vrc yl -0.5 2.0

*Input power and references
VDD VDD 0 DC 1.5
Vtrip Vtrip 0 DC 0.75
VCM VCM 0 DC 0.75

*Input Signal
Vin    Vin   0 DC 0 Sin 0.75 0.7 500k

*Clock Signal
Vphi1  phi1  0 DC 0  Pulse 0 1.5   0    200p  200p  4n 10n
R1 phi1 0 1MEG

*Ideal inverter
S8 VDD Vinvout VTRIP Vout switmod
S9 0 Vinvout Vout VTRIP switmod

*Setup load capacitor
CF Vrc 0 1p

*Setup summing resistors
R3 Vin Vrc 20k
R4 Vinvout Vrc 20k

*clocked comparator implementation
XSH VDD VTRIP Vrc Outsh phi1 SAMPHOLD
S6 VDD Vout Outsh VCM switmod
S7 0 Vout VCM Outsh switmod

.model switmod SW RON=0.1

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1  Vinbuf  VinS  VTRIP CLOCK switmod
Cs1  VinS 0 1e-10
S2  VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW  
.ends
.end

Figure 5  SPICE netlist of analog NS modulator with RC feedback shown in Fig. 32.94.



Close examination of Fig. 6 shows that the RC time constant is the same as that of
Fig. 4, but because the integrated charge is now always referenced to the system
ground, rather than the virtual ground with the op-amp, the integration does not
reach as high.  (Notice that the integration in this circuit is not inverted as it was
using the op-amp design.)

In an attempt to increase
the dynamic range, the
RC time constant may be
increased to improve the
integration characteristics.
Fig. 7 shows the results of
using 200K resistors
instead of 20K.  Notice
that the modulator is now
oscillating across a wider
range, but that the
integration values have
been reduced.  This would
require that the
comparator be very
sensitive to small changes
and immune to system
noise.  This is not practical.

Figure 6  Simulation results of analog NS modulator of Fig. 32.94 with R values set to 20K each.

Figure 7  Simulation results of analog NS modulator of Fig.
32.94 with R values set to 200K each.



Problem 32.20  Sketch a modulator output, similar to Fig. 32.27, if the input
is 0.2V.

0

 1.5V

8 16 24 32 40 48

13 15 28 30 43 45

                   1.5V x 2

average= ------------ = 0.2V
                        15

modulator output



32.21
Jeremy Rice

Ripple on the output of the digital filter in a modulator is the result of not limiting the
bandwidth of the filter down low enough. For DC inputs, there will always arise a
repetitive sequence on the output of the modulator which will pass through the filter to
the output if there is not sufficient decimation( ie, low enough bandwidth) to remove these
unwanted tones.



Bob Moehrke EE515 (bmoehrke@amis.com)

Question 32.22

Does adding a dither signal to the input of an NS modulator help reduce the peak-to-peak ripple in the
digital filter output?  Does it help to break up tones in the filter’s output?

For DC signals, adding a noise dither source will cause the period out of the NS to vary.  This will keep the
noise power from being contained in one frequency and help increase the SFDR.  Because with the added
noise, one’s can be closer together; this can cause the filter output code to be larger.  But even though the
peak-to-peak ripple can be larger, the average over several periods should be the same as without the dither
source.



32.23 Derive Eq.(32.39) .

Y(z) =   z-1 · GF               · X(z) +                   1-z-1                  · E(z)
1+z-1(GF -1)                          1+z-1(GF -1)

Solution:
This equation was created from the diagram given in Fig. 32.36:

Examining the point just after the summing point, before the GI gain block, a couple of relationships are observed by
inspection. The signal at that point is the difference of X(z) – Y(z). Applying the forward gains and the noise-shaping
up to the addition of the error signal yields:  [X(z) – Y(z)] z-1 · GF . Adding in the error signal yields:

          1-z-1

Y(z)  =  [X(z) – Y(z)] z-1 · GF  + E(z)
1-z-1

Multiply both sides by (1-z-1):

(1-z-1) · Y(z)  =  [X(z) – Y(z)] z-1 · GF  + E(z) · (1-z-1)

Gathering all Y(z) terms:

Y(z) – Y(z) z-1 + Y(z)GF z-1 = X(z) z-1 GF + E(z) · (1-z-1)



Rearranging twice:
Y(z) (1 + GF z-1 -  z-1) = z-1GF X(z) + E(z) · (1-z-1)

Y(z) [1 + z-1(GF - 1)] = z-1GF X(z) + E(z) · (1-z-1)

And isolating Y(z):

Y(z) =   z-1 · GF               · X(z) +                   1-z-1                  · E(z)
1+z-1(GF -1)                          1+z-1(GF -1)

QED
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Richard Friel
Rich_Friel@AMIS.COM

Question: #32.24

Repeat Ex 32.11 if the integrator gain is set to 0.5.

Solution:

Example 32.11:

Show using SPICE simulations and the modulator of Fig. 32.7, that an
integrator gain of 0.4 will result in an op-amp output range well within the power
supply range. The spice simulation result is shown below for a gain=0.4. This
shows that the integrator output is well within the voltage supply range of 1.5V.

If the gain of the integrator is set to 0.5, the spice simulation results are shown
below:



 



32.25   Verify equation 32.43 is correct. Use pictures if needed.

Referring to Fig. 31.78, when Vout is connected to the  Ö2 switch,

[ ]( )sCMI nTVVCQ 22 −=

This is assuming that the op amp is ideal, and therefore the gain is infinite. With a
nonideal  op amp with finite gain:

        
[ ] [ ]sCM

OL

sout nTVV
fA

nTV
−−=

)(

In the small signal analysis, Vcm = 0 volts AC. Therefore,

When the Ö2 switch is closed, the voltage at V- is added to the voltage on the top
plate of CI. Therefore,

[ ] [ ]  
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
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Problem 32.26
brian_bergeson@amis.com

Question 32.26:

Would large parasitic op-amp input capacitance affect the settling time of a DAI?

Answer:

Yes, large parasitic op-amp input capacitance would slow the settling time of a DAI.

The DAI circuit can be seen in Fig. 32.41.  The change in the op-amp’s output can be written as:

Vout = Voutfinal*(1-exp((-t*2*pi*fu*CF)/(CI+CF)))    (see: Eq. 32.53 and Eq. 32.54)

If the op-amp has large parasitic input capacitance (CP) then it is like there is another cap in parallel with
CI.  You could think of CI and CP as one new cap, CT, that takes the place of CI in Fig, 32.41 (were
CT=CI+CP).  Then the change in the op-amp’s output can be rewritten as:

Vout = Voutfinal*(1-exp((-t*2*pi*fu*CF)/(CT+CF)))

Or as:

Vout = Voutfinal*(1-exp((-t*2*pi*fu*CF)/(CI+CP+CF)))

This clearly shows that the change in the op-amp’s output, or settling time, will get slower as CP gets
larger.



Tyler J. Gomm
tjgomm@micron.com

32.27 Determine the transfer function of the DAI shown in Fig. 32.43.

The transfer function of the fully-
differential DAI is determined in a
similar fashion to the single-ended
DAI, where the charge difference on
CI is transferred to the feedback
capacitor, CF.  The output only
changes state when the φ2 switches are
closed, so the timing of Fig. 1 is used
to determine the capacitor charges
when the switch positions are
changed.

When the φ1 switches are closed at
2/1−n , the charges stored on the

input capacitors are

]))2/1[(( 1)(1 sCMITOP TnvVCQ −−= +

]))2/1[(( 1)(1 sCMIBOTTOM TnvVCQ −−= −

Realizing that the capacitor plates on the op-amp inputs are at VCM when the φ2
switches close,

])[( 2)(2 sCMITOP nTvVCQ +−=
])[( 2)(2 sCMIBOTTOM nTvVCQ −−=

t

n

2φ

1φ

Ts

n -1

n -1/2

Figure 1  Clock phase timing.



The differences in the charges (Q1 – Q2) are transferred to the feedback
capacitors, resulting in a change in the output voltages.  The changes can be
written as

])[])2/1[((]))1[(][( 21 ssIsoutsoutF nTvTnvCTnvnTvC ++++ −−=−−
])[])2/1[((]))1[(][( 21 ssIsoutsoutF nTvTnvCTnvnTvC −−−− −−=−−

These equations can be written in the z domain as
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Remembering that Vout = vout+ - vout - , V1 = v1+ - v1- , and V2 = v2+ - v2-
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This transfer function is identical to that of the single-ended discrete-analog
integrator.
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Problem 32.28
Jim Slupe

32.28 Derive Eq. (32.65).

Answer:  Starting with equation 32.64:
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f
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V
fVfNTF π2sin4
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|)(||)(| ••
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=• (32.64)
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Substituting xx ≈sin  (equation 32.14):
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Canceling terms and taking the square root of both sides yields:
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Brandon Roth
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32.29 Sketch the implementation of the full-differential second-order NS modulator.

Full-Differential Second-Order NS Modulator

-
++

-
+

-Vcm Vcm

Cf

Cf

Cf

Cf

Ci

Ci

Ci

Ci

t2 t2t1 t1

t1

Vin+

Vin-

Vout



David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 32.31
Question:  Sketch the fully-differential equivalent of Fig. 32.59.

Answer:  In order to change Fig. 32.59 to a fully-differential circuit, VCM is disconnected
at the op-amp and all the + components are duplicated for the – components.  The fully-
differential circuit is shown below.



David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 32.32
Question:  Resimulate the modulator in Ex. 32.13 if the gains are set to one.  Comment
on the stability of the resulting circuit.

Answer:  Ex. 32.13 sets the gains to 0.4 by setting the ratios of the capacitors.  In order to
set the gains to one, the capacitors must be equal, or CI2 = CI3 = CF2.  In this way, the
ratio of any two capacitors is one, and all of the gains are one.  The figure below shows a
resimulation of Fig. 32.62 with all the capacitors changed to a value of 1 pF.

Just as Fig. 32.62 indicates instability of the signal because its magnitude exceeds the
power supply, the figure above is also unstable.  In fact, since power supply is between 0
and 1.5 V, the figure above is highly unstable.



1

Gexin

Problem 32.33: Resimulate the modulator in Ex. 32.13 if the input is only 50mV.
Comment on the stability of the resulting circuit.

Solution for 32.33:

Use the following statement in the netlist (See fig32_64.cir):

*Input Signal
Vin    Vin   0 DC 0.05

The simulation result is shown below:

The simulation shows the comparator input and output, after low-pass filtering, for the
modulator of Fig. 32.61 when the input signal is 50mV(DC).

The plot shows that the circuit is unstable. The average value for comparator output
(Voutf2) doesn’t match the input signal value.

Increase the input signal amplitude makes the modulator more stable so long as the
integrators don’t saturate.

To verify this statement, we can increase the input signal amplitude to show how the
stability of the modulator will be improved.



2

When the input signal amplitude is increased to 0.75V,
 The simulation is shown as follow:

From the simulation, we can see that the comparator gain is 1=cG . From the equation
(32.76), we can get the poles:

  
366.084.0

366.084.0

2

1

jZ

jZ

p

p

−=

+=

Compare with the Ex.32.12, these poles are more close to origin, which means the circuit
is more stable.



Brandon Roth 
brandonroth@micron.net 
 
32.34 Regenerate Fig. 32.67 by selecting integrator gains so that the maximum output 

swing of any op-amp is 1.3V. 
 

In figure 32.67 the output of the first integrator is well over 1.5V while the output 
of the second integrator is closer to 1.4V.  Since the integrators are in series, 
lowering the gain of the first integrator will decrease the output swing of both 
integrators.  Therefore, it is only necessary to lower the gain of the first integrator. 
 
Setting G1 equal to 0.03 results in an output swings for both integrators of less 
than 1.3V.  Remember that decreasing gain increases the input-referred noise. 
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Simulation results of second order NS Modulator with G1=0.03, G2=0.4, and G3=1. 

 



 
zoom-in results of previous figure. 
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Problem 32.35
Jim Slupe

32.35 Comment, in your own words, why the actual SNR of a NS-based data converter
can be worse than the ideal values calculated in the chapter.

Answer:  I wish I could comment in my own words, but the reasons were given in lecture
14.

• First, we may not be meeting Bennett’s criteria that the input must be busy.
• Second, it was assumed that there were no tones present, there are tones.
• Lastly, it was assumed that the quantization noise was white (the noise power was

uniformly spread across the spectrum), this too is incorrect.



32.36 
Jeremy Rice

Derive Eq 32.91 with coments

Starting with 32.89:

SNRideal 6.02 N⋅ 1.76+ 20 log
πm

2 M⋅ 1+









⋅− 20M 10+( ) log k( )⋅+

From this equation, we can see the first two terms are the SNR for a standard nyquist converter

From 32.90

SNRideal 6.02 N Ninc+( )⋅ 1.76+

So, Ninc as defined by 32.90 is just the two right hand terms of 32.89 divided by 6.02

Ninc 20 M⋅ 10+( )log k( ) 20 log
πM

2 M⋅ 1+







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⋅−
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

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⋅
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Problem 32.37:

Resimulate Fig. 32.37 using two-bit ADC and DAC.

Results:
* Problem 32.37 CMOS: Mixed-Signal Circuit Design *

.tran 2n 20u 0 2n UIC

*WinSPICE command scripts
*#destroy all
*#run
*#let bout0=b0+1
*#let bout1=b1+3
*#plot bout0 bout1
*#plot vout vin xlimit 2u 4u
*#linearize vout
*#spec 0 50MEG 100k vout
*#let voutdb=db(vout)
*#plot voutdb ylimit -100 0
*don't forget to limit spectral analysis to 3.1MEG (if K=16) when doing spectral analysis
**#let m=mag(vout)
**#let m[0]=0
**#let m[5]=0
**#let qdnoise=0.707*sqrt(mean(m*m)*length(m))
**#print qdnoise
**#let SNRD=db((0.5/sqrt(2))/qdnoise)
**#print SNRD

*Input power and references
VDD VDD 0 DC 1.5
Vtrip Vtrip 0 DC 0.75
VCM VCM 0 DC 0.75

*Input Signal
Vin Vin 0 DC 0 SIN 0.75 0.5 500k

*Clock Signals
Vphi1 phi1 0 DC 0 Pulse 0 1.5 0 200p 200p 4n 10n
Vphi2 phi2 0 DC 0 Pulse 0 1.5 5n 200p 200p 4n 10n
R2 phi1 0 1MEG
R3 phi2 0 1MEG

*Use a VCVS for the op-amp
Eopamp Voutop 0 VCM Vinm 100MEG

*Setup switched capacitors and load
CI Vtop Vbot 0.4p



CF Voutop Vinm 1p

*Setup switches for the integrator
S1 VCM Vtop phi1 VTRIP switmod
S2 Vin Vbot phi1 VTRIP switmod
S3 Vtop Vinm phi2 VTRIP switmod
S4 Vbot Vout phi2 VTRIP switmod
.model switmod SW RON=0.1

*ADC Implementation
X1 VDD VDD 0 Voutop B1 B0 phi1 ADC2bit

*DAC Implementation
X2 VDD VDD 0 Vout B1 B0 DAC2bit

*** START ADC Subcircuit ***********************************

.subckt ADC2bit VDD VREFP VREFM Vin B1 B0 CLOCK

* Set up common mode voltage
BCM VCM 0 V=(V(VREFP)-V(VREFM))/2

* Set up logic switching point
R3 VDD VTRIP 100MEG
R4 VTRIP 0 100MEG

* Ideal input sample and hold
XSH VDD VTRIP VIN OUTSH CLOCK SAMPHOLD

* Level shift by VREFM and 1/2LSB
BPIP PIPIN 0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^3)

* 2-bit pipeline ADC
X1 VDD VTRIP VCM PIPIN B1 VOUT1 ADCBIT
X0 VDD VTRIP VCM VOUT1 B0 VOUT0 ADCBIT
.ends

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1 Vinbuf VinS VTRIP CLOCK switmod
Cs1 VinS 0 1e-10
S2 VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW
.ends

* Pipeline stage
.SUBCKT ADCBIT VDD VTRIP VCM VIN BITOUT VOUT
S1 VDD BITOUT VIN VCM switmod
S2 0 BITOUT VCM VIN switmod
Eouth Vinh 0 VIN VCM 2
Eoutl Vinl 0 VIN 0 2
S3 Vinh VOUT BITOUT VTRIP switmod
S4 Vinl VOUT VTRIP BITOUT switmod



.model switmod SW

.ends
*** END ADC Subcircuit *************************************

*** Start Ideal DAC Subcircuit ******************************

.subckt DAC2bit VDD VREFP VREFM Vout B1 B0

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

*Change input logic signals into logic 0s or 1s
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-v(vrefm))/4)*(v(B1L)*2+v(B0L))+v(vrefm)

.ends

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod
SL 0 BXL trip BX Switmod
.model switmod SW
.ends

*** END DAC Subcircuit *************************************
.end
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Question: #32.39

What transfer function is implemented by the diagram in Question 32.39?

Solution:

The transfer function diagram in Question 32.39 is implemented by the
following function:

                                        )2()( 12 −− −⋅= zzzF



32.40 In Fig. 32.84 sketch the block diagram of the circuit in series with the Y2(z) output.

Solution:
The portion of the circuit in question is shown below, followed by its block diagram:





Bob Moehrke EE515 (bmoehrke@amis.com)

Question 32.41

Sketch the block diagram implementation of the transfer function (1 – z -2) 2.  What kind of filter does this
transfer function implement?

This transfer function represents two cascaded comb filters or differentiators.  The magnitude response can
be found using the equation right above figure 31.52:

|H(f)| = SQRT( 2 * ( 1 – cos ( 2ðKf / fs )))

For this particular case K = 2 and since there is a cascade of two filters, the magnitude response of this
transfer function is

|H(f)| = 2 * ( 1 – cos ( 4ðf / fs ))

The block diagram implementation is

X(z)        Y(z)

Z-1 Z-1

+
+

Z-1 Z-1

+
+



32.42
Jeremy Rice

Sketch the implementation of the multipliers in Fig 32.93.

The multipliers of fig 32.93 take the output of the modulator, and multiply it with either a
sin, or cosine wave sampled at Fs/4 which provides only 0, 1, -1 from the sine/cosine
waves.  To do the multiplication, it is necessary that both the modulator output, and the
sine/cosine be converted to 2’s compliment.  The truth table below shows the possible
input/outputs for the system.

modulator sine/cosine output
01 01 01
01 00 00
01 10 10
10 01 10
10 00 00
10 10 01

From this table, it is clear that whenever the output of the modulator is a 1(01), the bits
from the sine/cosine are passed directly.  And, whenever the output of the modulator is
0(10), the bits from the sine/cosine are inverted.  This operation can be accomplished by
the circuit below, without converting the modulator output to 2’s compliment.



Problem 32.43  Would clock jitter be a concern in a bandpass modulator?

If phase noise due to clock jitter is narrow, then jitter power is concentrated around
the frequency of input sinusoid fin as shown in Figure 31.14.  So when the input
sinusoid fin is applied to a bandpass modulator, the clock jitter power can fall directly
in the bandpass’s bandwidth of interest around fs/4.  The jitter power can add to
quantization noise and thermal noise as described in equation (33.29).  This will then
lower the data converter’s SNR.  Also, distortion resulting from non- linearities and
mismatch in the data converter circuitry can add to the sampling clock error signal.
This in turn lowers the data converter’s SNDR.  Therefore, the clock jitter can be
problematic for the bandpass modulator.
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