
David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 31.1
Question:  Develop an expression for the effective number of bits in terms of the
measured signal-to-noise ratio if the input sinewave has a peak amplitude of 40% of
(VREF+ - VREF-).

Answer:  Eq. (31.1) is the ratio in decibels of RMS input signal to the RMS quantization
error (Eqs. ( 30.30) and (30.32)).  Eq. (31.2) is developed in Chapter 30 (Eq. (30.23)).
These equations are the starting point and are reiterated below
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and the ideal SNR can be written as
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(Note: when comparing the previous equation to Eq. (31.4), it is shown that as the
number of bits increases the effect of a diminished input signal is increasingly less
important in determining the SNRideal.)

The same equation can be converted from an ideal equation to a real equation by
changing the variable names – ideal to measured and bits to effective bits

177.002.6 −= effmeas NSNR

Solving for the number of bits, a final answer is obtained

02.6
177.0+= meas

eff
SNRN

So, by limiting the input to less than the full voltage range, the number of effective bits is
increased to sample a signal with the same SNR.  Conversely, if the input signal is
decreased and the same number of sampling bits is used, the SNR will decrease.
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31.2: Determine a data conversion system’s SNR if the measured RMSQeV ,  is 1 mV
and the maximum peak-to-peak amplitude of an input sinewave is 1V.

Solution for 31.2:

The RMS value for the given sinewave signal is V
2

1
2
1 ⋅ .

So the SNR value for this data conversion system is:

515.353
1

25.0 ===
mV

SNRmeas  dB
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31.3 Repeat Ex. 31.2 if the sampling frequency is increased to 200MHz.  Does the SNR 

change? 
 

From example 31.2, using an ideal 8-bit ADC and DAC find the SNR using SPICE.  The 
input to the ADC is a 25MHz sine wave with a peak amplitude of 0.75V centered on a 
DC voltage of 0.75V. 
 
 tMHzVin )25(2sin75.075.0 π+=  
 
First lets find the SNRideal value using hand calculations. 
  
From Eq. 31.4 

dBdBdBNSNRideal 5092.4976.1)8(02.6)(76.102.6 ≈=+=+=  
 

 Using the netlist from example 31.2, the following changes were made: 
1. The Vclock pulse period and width were decreased to 5.0ns and 2.4ns 

respectively to increase the frequency to 200MHz. 
2. The only spectrum components of the FFT that should be ignored are DC (0), 

25MHz (the input signal), and 175MHz (were 175=fs-fin, the first alias 
component).  The range of the FFT was left at 200MHz so no further alias 
signals need to be excluded/ignored. 

3. Finally the simulation stepsize had to be decreased from 2ns to 0.5ns.  From 
Chapter 30 

Stepsize = 10% of Ts = 10%(5ns) = 0.5ns 
    

Without using the smaller stepsize the simulation returns 60mV for the 
total noise. 

  
 Below is the netlist with the changes described above,  
  * Problem 31.3 CMOS: Mixed-Signal Circuit Design * 

.tran .5n 2000n 0 .5n UIC 

.save Vout 
 

*WinSPICE command scripts 
*#destroy all 
*#run 
*#plot Vin Vout xlimit 0 100n 
*#linearize Vout  
*#spec 0 200MEG 1MEG Vout  
*#plot db(vout) 
*#let m=mag(vout) 
*#let m[0]=0  
*#let m[25]=0  
*#let m[175]=0  
*#let qnoise=0.707*sqrt(mean(m*m)*length(m)) 
*#plot qnoise 
 
VDD VDD 0 DC 1.5 
VREFP VREFP 0 DC 1.5 
VREFM VREFM 0 DC 0  



 
Vin    Vin   0 DC 0  Sin   0.75 0.75  25MEG   
Vclock clock 0 DC 0  Pulse 0    1.5   0    200p  200p  2.4n 5n 
 
X1 VDD VREFP VREFM Vin B7 B6 B5 B4 B3 B2 B1 B0 clock ADC8bit  
X2 VDD VREFP VREFM Vout B7 B6 B5 B4 B3 B2 B1 B0 DAC8bit 
 
*** Start Ideal DAC Subcircuit ****************************** 
.subckt DAC8bit VDD VREFP VREFM Vout B7 B6 B5 B4 B3 B2 B1 B0 
*Generate Logic switching point, or trip, voltage  
R1 VDD trip 100MEG 
R2 trip 0   100MEG 
 
*Change input logic signals into logic 0s or 1s 
X7 trip B7 B7L Bitlogic 
X6 trip B6 B6L Bitlogic 
X5 trip B5 B5L Bitlogic 
X4 trip B4 B4L Bitlogic 
X3 trip B3 B3L Bitlogic 
X2 trip B2 B2L Bitlogic 
X1 trip B1 B1L Bitlogic 
X0 trip B0 B0L Bitlogic 
 
*Non-linear dependent source, B, for generating the DAC output  
Bout Vout 0 V=((v(vrefp)-v(vrefm))/256)*(v(B7L)*128+v(B6L)*64+ 
+v(B5L)*32+v(B4L)*16+v(B3L)*8+v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm) 
.ends 
 
.subckt Bitlogic trip BX BXL  
Vone  one  0  DC  1 
SH  one BXL BX trip  Switmod 
SL 0 BXL trip  BX Switmod 
.model switmod SW  
.ends 
*** END DAC Subcircuit ************************************* 
 
*** START ADC Subcircuit *********************************** 
.subckt ADC8bit VDD VREFP VREFM Vin B7 B6 B5 B4 B3 B2 B1 B0 CLOCK 
* Set up common mode voltage  
BCM  VCM 0 V=(V(VREFP)-V(VREFM))/2 
* Set up logic switching point 
R3  VDD    VTRIP  100MEG 
R4  VTRIP  0      100MEG 
* Ideal input sample and hold  
XSH  VDD VTRIP  VIN  OUTSH  CLOCK  SAMPHOLD 
* Level shift by VREFM and 1/2LSB 
BPIP PIPIN  0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^9) 
* 8-bit pipeline ADC 
X7  VDD VTRIP  VCM  PIPIN  B7 VOUT7  ADCBIT 
X6  VDD VTRIP  VCM  VOUT7  B6 VOUT6  ADCBIT 
X5  VDD VTRIP  VCM  VOUT6  B5 VOUT5  ADCBIT 
X4  VDD VTRIP  VCM  VOUT5  B4 VOUT4  ADCBIT 
X3  VDD VTRIP  VCM  VOUT4  B3 VOUT3  ADCBIT 
X2  VDD VTRIP  VCM  VOUT3  B2 VOUT2  ADCBIT 
X1  VDD VTRIP  VCM  VOUT2  B1 VOUT1  ADCBIT 
X0  VDD VTRIP  VCM  VOUT1  B0 VOUT0  ADCBIT 
.ends 
* Ideal Sample and Hold subcircuit  
.SUBCKT  SAMPHOLD VDD  VTRIP Vin  Vout  CLOCK 
Ein Vinbuf 0 Vin Vinbuf 100MEG 
S1   Vinbuf  VinS   VTRIP CLOCK switmod 
Cs1   VinS  0  1e-10 
S2   VinS  Vout1  CLOCK VTRIP switmod 
Cout1  Vout1  0  1e-16 
Eout  Vout  0  Vout1  0 1 
.model switmod SW   
.ends 
* Pipeline stage 
.SUBCKT ADCBIT  VDD VTRIP  VCM  VIN  BITOUT VOUT 
S1    VDD  BITOUT VIN VCM switmod 



S2    0    BITOUT VCM     VIN  switmod 
Eouth  Vinh  0 VIN  VCM  2 
Eoutl  Vinl  0 VIN 0    2 
S3   Vinh VOUT  BITOUT  VTRIP switmod 
S4   Vinl VOUT   VTRIP BITOUT switmod 
.model switmod SW  
.ends 
*** END ADC Subcircuit ************************************* 
.end 

 
 WinSpice results for the total noise. 
 

 
Quantization noise = VQe,RMS = 1.26mV 

 
SNR measured is 
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Which is very close to the 50dB ideal SNR calculated above.  This result is 
approximately equal to the results of Example 31.2 were a 100MHz sampling frequency 
was used.  This is what is expected.  Changing the sampling frequency has no effect on 
the total quantization noise, and therefore no effect on the SNR.  The deviation in the 
results is explained by the change in stepsize, necessary to get accurate results in this 
problem when using a 200MHz sampling frequency. 
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Problem 31.4
Jim Slupe

31.4 Why is the amplitude of the tone at 45 MHz in the DAC output Spectrum shown
in Fig. 31.3b smaller than the amplitude of the ADC input signal?  What is the
origin of the noise added to the DAC output signal in Fig 31.3b?

Answer:
The signal at 45 MHz is reduced by the sample and hold response of the ADC.
Specifically, the 45 MHz input is at 0.75 V (-2.5 dB).  The ADC sample and
hold Sinc response will be as follows:

Sinc ( fsf /∗π  ) = Sin ( fsf /∗π  ) / ( fsf /∗π  )

Taking the log of that result and multiplying by 20 gives you the difference
between the input amplitude and the resulting amplitude of the signal:

Vout(dB) = 20*log(Sin (pie*45 / 100) / (pie*45 / 100)) = -3.11 dB

Adding –3.11 dB to the input signal level of –2.5 dB gives a voltage level for
the 45 MHz signal as –5.6 dB.  This is in close agreement with the –5.5 dB value
given in Example 31.3.

The noise added to the DAC output signal is quantization noise.  What is
interesting about the noise is the “binning” at 5 MHz intervals.  This is a function
of the way the sampling frequency and the input frequency interact.  The
following two lines were added to the SPICE file to highlight this interaction in
the time domain:

*#plot Voutd xlimit 900n 1200n ylimit -1500m 1500m
Ediff Voutd 0 Vout Vin 1

Which resulted in the plot on the next page.  The plot very clearly shows the
signal at 5 MHz as a modulation envelope.  The other frequencies can be deduced
from the shape of the resulting sine wave.
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Problem 31.5
Question:  When using Eq. (31.8) what is the assumed ADC input signal?  Put your
answer in terms of the ADC reference voltages.

Answer:  The magnitude of the least significant bit is defined with the number of bits and
the reference voltages as stated in (31.2)

N
REFREF
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VVLSBV

2
1 −+ −==

With this definition, Eq. 31.8 assumes that input signal satisfies Bennett’s criteria:
1. The signal must have a peak-to-peak voltage greater than 1 LSB.
2. The signal must be contained between VREF+ and VREF-.
3. The signal must be “busy.”  In other words, input signal must periodically change the

digital output.
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Problem 31.6
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Problem 31.6:

Describe in your own words the difference between specifying SNR and SNDR.

Answer:

ADC SNR (signal to noise ratio) is the ratio of the ADC input signal to the quantization noise introduced
by the ADC (VQE,rms).  SNR is calculated in dB with the following equation.

SNR = 20 * log ( Vrms / VQE,rms )

ADC SNDR (signal to noise plus distortion ratio) is the ratio of the ADC input signal to the sum of the
ADC quantization noise and the distortion introduced from nonlinear or non-ideal components in the ADC
circuitry (VD,rms).  SNDR is calculated, in dB, with the following equation.

SNDR = 20 * log ( Vrms / (VQE,rms + VD,rms) )

SNDR is the more practical calculation because real world components are non-ideal and create distortion.



31.7 Suppose a perfectly stable clock is available, the peak-to-peak clock
jitter is zero in Eq. (31.12). Would we still have a finite aperture
window if the clock has a finite risetime? Describe why or why not.

During the transitioning time of the clock, there is still uncertainty
as to when the clock is considered high or low, so it is uncertain as
to when the input signal is truly sampled. The slower the transitioning
time of the clock, the larger the sampling uncertainty. Even though
the peak-to-peak clock jitter is zero, we would still have a finite
aperature window, if the clock has a finite risetime.
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Question 31.8
Richard Friel
Rich_Friel@AMIS.COM

Question: #31.08 How do the number of bits lost because of aperture jitter change
                            with the frequency of the ADC input sinewave? If the ADC
                             input is a DC signal, is aperture jitter a concern? Why?

Clock jitter is the variation in the period of the clock signal around the ideal
value1. If we assume the input frequency is running at the Nyquist frequency, fn ,
(= fs/2), then the sampling point is seeing the fastest transition in the input signal
as shown in Figure 31.6 in the text. The slew rate of the signal, at the sampling
point, is given by Equation (31.11) as follows:

                            
∂

π π π π
t

V f t f V f t f Vp s s p s s p( sin ) cos= =
=1

124 34
                (31.11)

We are interested in peak-to-peak jitter, defined as ∆Ts . Therefore, at time
t=0, the cosine function has the maximum slope, as defined in Figure 31.6.
Uncertainty in the sampling instant, ∆Ts , can be related to uncertainty in the
sampled voltage, ∆Vs ,

                                         ps
s

s Vf
T
V π=

∆
∆

or psss VfTV π∆=∆                                (31.12)

If the uncertainty is required to be at most, 0.5LSB, then maximum peak to
peak clock jitter is determined to be,

                                                          ∆T fs N
s

≤
1

2
1

π
                                            (31.13)

                                                                
1 The following solution is taken from the text, section (31.1.2), Clock Jitter.



In the case where the signal being sampled has a frequency below the
Nyquist value, Equation (31.13) cannot be used directly. We can rewrite Equation
(31.13), using fin ,

                                                        
in

Ns f
T

π2
1

2
1≤∆                                               (31.15)

The SNR of the data converter is degraded from the ideal value, Eq. (31.14),
when the input sampling clock is not ideal. Assuming a resolution loss >= 0.5
LSB, the following equation is derived from remembering that:

0.5 LSB= (Vref+ - Vref-)/2N+1, and

Vp= (Vref+ - Vref-)/2,  Then,

                                                
in

NNs f
T

LOSS π2
1

2
1

−=∆                                              (31.17)

By solving for NLoss , term in the above equation,

                                        NfTN inSLOSS +∆= )
)2ln(

1)2(ln( π                              (31.17.1)

we can observe how the number of bits lost, NLOSS, changes with frequency of the
input,  for a known aperture jitter, ∆Ts . If the ADC input is a DC signal, the
aperture jitter, ∆Ts  =0,  because all of the samples are at the same point and
fin = 0. Therefore, aperture jitter is not a concern at DC or fin = 0.



Problem 31.9 Show the time-domain signal that generates the spectrum shown in Fig.
31.10. Verify in the time-domain that the signal’s rising and falling edges do indeed
vary from their ideal positions.

Solution:
The clock generated from Fig. 31.10 is given below, followed by three consecutive rising
and falling edges.

Three consecutive rising edges:

9.856015 nS



19.856025 nS

29.8564 nS



Three consecutive falling edges:

4.8567 nS

14.85659 ns



24.8575 nS

For an ideal period(no jitter), the rise/fall displacement from the period boundary would
be uniform. The table below shows that the rise and fall times vary from these ideal
positios.
ÄT = Tboundary –Trising/falling
The rise boundary is some multiple of 10 nS, while the fall boundary is 5 nS later/earlier.

Trising ÄTrising Tfalling ÄTfalling
9.856015 nS ÄT=143.99 pS 4.8567 nS ÄT=143.3 pS
19.856025 nS ÄT=143.98 pS 14.85659 nS ÄT=143.41 pS
29.8564 nS ÄT=143.6 pS 24.8575 nS ÄT=142.5 pS
This table shows a variations of the rising edge for three consecutive edges, and a shift
back and forth of the falling edge. QED
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Question 31.10

Describe in your own words the problems with simulating clock jitter using SPICE.

While clock jitter is truly random; since SPICE uses a computer, the closest it can come to this is pseudo-
random.  Following equation 31.28 (which requires that FS, the rate at which the clock jitter varies, be
1/simulation time) will lessen the appearance of the jitter being periodic, but it is still pseudo-random at
best.  Another difficulty with using SPICE is that if the jitter to be modeled is on the order of picoseconds
the step size of the simulation will have to be very small, thus making simulation times excessively long.







Tyler J. Gomm
tjgomm@micron.com

31.13 Sometimes the average power specified by Eq. (31.37) is termed total
average normalized power of a signal.  Why?

Equation (31.37) states that the average signal power, assuming a 1-Ω load, is
given by

dffPdffPP ininAVG ⋅⋅=⋅= ∫∫
∞∞

∞− 0

)(2)(       (units, V2/Ω or Watts)

Note that this equation is a sum (integration) of power across frequency, and is a
total of average power at various frequencies.

The average voltage value of a sinewave is zero.  Therefore the average value
cannot be used to calculate the power of a sinewave.  This is the reason that RMS
values are used when considering power.  The RMS value of a sinewave will
dissipate the same amount of power as a DC voltage of the same value when
either is applied across a resistance.

R
V

R
V DCRMS

22

=    when   DCRMS VV =

This is to say that the RMS value squared is the average power of the sinewave
(assuming a 1-Ω load).  When the average power (RMS squared) of each
sinewave in a spectrum is summed up across the spectrum (or in other words, we
integrate the power spectral density), this is called the total average power.

Equation (31.37) may also be referred to as total average normalized power,
because the assumption of a 1-Ω load normalizes the power to the load.  For
example, normalized DC power would be calculated as follows

2

2

1
V

R

R
V

PNORMALIZED ==

This is the same as assuming a 1-Ω load.

By normalizing with respect to the load, power may be compared from system to
system without considering the load.
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Problem 31.14
Question:  When WinSPICE generates a plot from an FFT the units on the y-axis are
volts peak (the peak value of a sinewave at a given frequency).  How do we change this
plot into RMS voltages, voltage spectral density, and power spectral density vs.
frequency?

Answer:  The following examples are taken from WinSPICE example file 31.2.  Only the
WinSPICE command scripts are shown.

In order to plot the RMS voltage, the peak values must be divided by the square root of
two.  This is shown below.

*#destroy all
*#run
*#spec 0 200MEG 1MEG Vout
*#let m = mag(Vout)
*#let RMS = m/0.707
*#plot RMS

The voltage spectral density has units of V/(Hz)1/2.  Since the FFT uses discrete values, a
bandwidth of 1 Hz can be assumed for each individual sinewave.  Voltage spectral
density is then the same as peak volts.  This is shown below.

*#destroy all
*#run
*#spec 0 200MEG 1MEG Vout
*#let m = mag(Vout)
*#let VSD = m
*#plot VSD



Finally, power spectral density (PSD) is the voltage spectral density squared (employing
the previous assumption.)  The command script and plot are shown below.

*#destroy all
*#run
*#spec 0 200MEG 1MEG Vout
*#let m = mag(Vout)
*#let VSD = m
*#let PSD = VSD*VSD
*#plot PSD
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31.15 Repeat Ex. 31.12 if the sinewaves are first sampled.

Example 31.12
Determine the ACF, PSD, Average Power, and RMS value of a signal, V(t) made up of
three sine waves with peak amplitudes, of 1V , 2V , and 3V  with frequencies of 1f , 2f  and

3f .

Solution for 31.15:

Using equation (31.41) the ACF is

( ) ( ) ( ) ( )sss nTfVnTfVnTfVtR ⋅⋅+⋅⋅+⋅⋅= 3

2
3

2

2
2

1

2
1 2cos

2
2cos

2
2cos

2
πππ         (units, 2V )

The PSD is determined using equation (31.42)
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Assume the signal is passed through an ideal reconstruction filter (RCF) with a

bandwidth of 2
sf .

The PSD of the signal, after passing through the RCF, has amplitude of 4
2

1V  at

frequencies of 1f± , has amplitude of 4
2

2V  at frequencies of 2f±  and has amplitude of

4
2

3V  at frequencies of 3f± .

The average power of this signal is given by:

2

2
3

2
2

2
1 VVVPavg

++=                            (units, Watts)

Finally, the RMS value for this signal is given by:

 
2

2
3

2
2

2
1 VVV

PV avgRMS

++
==                        (units, V)
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31.16 Suppose the jitter in a clock signal can be characterized using the PDF shown in 

Fig. 31.12.  Further if �Ts = 100ps estimate the RMS value of clock jitter, 
standard deviation, and variance of the jitter. 

 
Variance is defined as the average of the square of a signals departure from its 
average value.  If we define the average value of the PDF in Fig. 31.12 as 
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 ∫
∞

∞−

⋅⋅−=−= dyyyyyy )()()( 222 ρσ    

 Substituting for the PDF in Figure 31.12 
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RMS is defined as standard deviation, and is the square root of the variance.  
Therefore the standard deviation or RMS clock jitter is  
 

 
12

sT∆=σ  

 
If �Ts = 100ps then the variance is 

( ) 22
2

2 1033.8
12

100 −×== psσ (seconds2). 

 
And the RMS jitter or standard deviation is 

 1110887.2
12

100 −×== psσ (seconds). 
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Problem 31.17
Jim Slupe

31.17 Suppose that a noise voltage has the PDF shown in Fig. 31.12.  If the maximum
voltage deviation from the ideal value is 10 uV estimate the RMS value of the
noise (the standard deviation) and the noise power (the variance).

Answer:

Looking first at the variance (since the standard deviation will simply be the
square root of the variance), the maximum deviation from the ideal value (0 uV) I
will call δ / 2 (equal to 10 uV).  Figure 31.12 can be redrawn for this problem as
follows:

2σ = dVV ••∫
−

δ
δ

δ

/1
2/

2/

2  = ( ) 2/
2/

3 |
3

1 δ
δδ −•

V =  
12

2δ
= 33.33...pW (noise power)

12/δσ = = 5.77 uV (noise voltage)

This probably looks familiar and it is.  The area under the PDF is equal to 1 or
( )( ) 12/2//1 =−−• δδδ   This was the case with Figure 30.47 as well as Figure

31.12 and graphically depicts an equal probability of an occurrence without any
bias relative to the 0 value.
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#31.18 Suppose that a noise voltage has a Gaussian PDF as seen in Fig. 31.13. If the
maximum voltage deviation from the ideal value is 10uV, estimate the RMS value of the
noise (the standard deviation) and the noise power (the variance).

Solution for 31.18:

The RMS value of the noise is uVuVvaluepeaktopeak 33.3
6
102

6
___ =×==σ

The noise power of the noise is 21222 1011.11)33.3( VuV −×==σ
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Problem 31.19:
Repeat Ex. 31.1 if we want to include an error from sampling jitter, Pave_jitter, of 1uW.

Example 31.1:
Determine the effective number of bits for an ADC with Vref+ = 1.5V, Vref- = 0V, and a measured
(quantization error/noise) Vqe_rms of 2mV.

If we assume that the input peak amplitude, Vp, is 0.5 * ( Vref+ - Vref- ) or 0.75V,
then the measured SNR is given by:
SNR = ( 0.75 / sqrt(2) ) / 2mV = 265 = 48.5dB

The effective number of bits, Neff, is (from Eq. 31.5) 7.76 bits.

Solution:
For this problem the SNR must be recalculated using the total rms noise.  The total rms noise is the rms
quantization noise (Vqe_rms) and the rms noise from the clock jitter (Vjit_rms).

If we assume:
Pave_jitter = Vjit_rms^2 / R, where R = 1ohm

then we know that:
Vjit_rms = sqrt( Pave_jitter ) = sqrt( 1uW * 1ohm ) = 1mV

Next we must calculate the total rms noise:
Vtot_rms = sqrt( Vqe_rms^2 + Vjit_rms^2 ) = sqrt( 2mV^2 + 1mV^2 ) = 2.24mV

Now we can recalculate SNR using Vtot_rms, instead of Vqe_rms:
SNR = ( 0.75 / sqrt(2) ) / Vtot_rms = 237, which is 47.5dB.

The new Neff (using Eq 31.5) is then 7.6 bits.



31.20 If a DC signal is input to a data conversion system, is Eq. (31.51)
valid? Name three conditions on the input signal in order for this
equation to be valid.

If a DC signal is input to a data conversion system, Eq. (31.51) is
not valid, since the input signal is not busy. In order for
Eq. (31.51) to be valid, the following conditions (Bennett's criteria)
must be met:

1) The input signal's amplitude can not exceed the limits of the
ADC's power supplies. Exceeding these limits adds spikes to the
output spectrum of the ADC, affecting the quantization noise
spectrum.

2) The input signal amplitude must be much greater than the ADC's LSB.
If this is not the case, the output of the ADC, after converting
back to an analog signal, can appear square-wave-like. This adds
spurs or spikes to the output spectrum.

3) The input signal must be busy. In other words, two consecutive
digital output codes can not be the same.
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Richard Friel
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Question: #31.21

If the standard deviation of the quantization noise in a data conversion system
equals 1mV, using Eq. (31.56), plot the PSD of the quantization noise.

Comment on the assumption that the noise power is limited to the Nyquist
frequency, fn. Does this result in an over- or underestimate for the actual power in
the spectrum of interest?

Solution:

From Eq. (31.54) we know that if the quantization noise is considered an
evenly distributed random variable, the standard deviation can be found by:

  σ = =
∞

∫
V

P f dfLSB
Qe12

2
0

( )          (31.54)

The standard deviation is the square root of the variance. In order to find the
variance, the thus use Eq. (31.56), we square the standard deviation. In this case,
we find that the variance is equal to 1mV and is the standard deviation squared
from Eq. (31.56),

( )∫ ⋅==
2

0

2
2 2

12

sf

Qe

LSB
dffP

Vσ                 (31.56)



If the quantization noise is considered a random variable and is evenly
distributed, the quantization noise power is constant and is equal to,

                                                P f
f

V
Qe

s

LSB( ) =
1

12

2

         (31.57)
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2 )1(
12

mV
V LSB ==σ  , and the QNPSD is plotted in Figure 1.

   PQe (f), V
2/Hz

                    V2
LSB

                   12*fs

      fn = fs/2          f

Figure 1. Quantization Noise Power Spectral Density

We know that the quantization noise does not experience aliasing because
quantization occurs after sampling. So while it is correct to look at a wide spectrum
to calculate noise, it is more useful to limit our view of the spectrum to the
frequencies up to the Nyquist frequency, (= fn = fs/2), where the desired signal
spectrum should reside. We do this by assuming that the entire noise power lies in
the base spectrum that is described by Eq. (31.56).1

The assumption that the entire quantization noise resides in the base spectrum
results in an over-estimation of the actual noise power in the spectrum of interest.

                                                          
1 Fig 1. And Text From the course notes, CMOS Mixed Signal IC Design by Jake Baker, pp. 88.



Problem 31.22: Show why averaging two 8-bit words, as seen in Fig. 31.19, must result
in a 9-bit word. (Why isn’t the sum of the two words divided by two [the average]
another 8-bit word?)

Solution: As in the figure below, two 8-bit words are added together. The carry out from
the addition operation becomes the MSB in a 9-bit word. The actual arithmetic average
could be created by ignoring D0 (the LSB) and just using the upper 8 bits. However, the
extra bit could be retained, keeping the extra information, keeping in mind that K = 2
(averaging two samples).

   1010 0101 = 165
   1010 0000 = 160
   -------------  ----
1 0100 0101 = 325

Shifting the result to the right, 325 becomes 162 (dropping the LSB from 162.5 to 162)
keeping only 8 bits. Keeping the extra bit gives a more accurate picture of the true
average. (Indeed, 1010 0010 .1 is 162.5, the true average.)



QED



Bob Moehrke EE515 (bmoehrke@amis.com)

Question 31.23

Why must Bennett’s criteria be valid for the averaging to reduce the quantization noise in Fig. 31.19?  Give
an example where averaging will not reduce quantization noise.

If Bennett’s criteria do not hold (the input signal isn’t moving around much), it is likely that a sample will
be the same as the previous one.  If this happens frequently then all of the benefits of averaging (K=2) will
disappear.  The idea is to find a midpoint (or average, K=2) between 2 samples in order to find a new
quantized point that can be different than the A/D by itself.  If 2 consecutive points are the same, the
average will be that point itself.  No new information is gained.  The simplest example of this is a DC input
signal.







Tyler J. Gomm
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31.26 Assuming Bennett’s criteria are valid, does averaging ADC outputs (or
DAC inputs) put any restrictions on the bandwidth of the input signal?
Why?  Give an example.

When ADC outputs (or DAC inputs) are averaged, there are several benefits,
including:

- Reduced quantization error
- Reduced effects resulting from jitter in the sample clock (sampling

error amplitude power, jitterAVGP , )
- Relaxed requirements for the Anti-Aliasing Filter (AAF)
- Increased SNR

However, in order for these advantages to be realized, the bandwidth of the input
signal must be restricted.

The effective RMS quantization noise voltage (when averaging is used) is given
in Eq. (31.68), where K is the number of terms averaged:

12
1

,
LSB

RMSQe
V

K
V ⋅=            (31.68)

Eq. (31.68) assumes the averaging filter does not attenuate the input signal.  If the
bandwidth is not limited, the SNR can be worse than the SNR of the system
without averaging.  For example, if the input frequency of the system shown in
Fig. 31.19 were fs/3, then the RMS amplitude of the desired signal would be

pV / 2  instead of the ideal pV⋅2 / 2  (the averaging gain of 2 is lost, because the
filter gain is 1 at fs/3).  This means the desired signal amplitude is reduced by a
factor of 2, and the SNR of the system is made worse than if averaging had not
been used at all!

Averaging results in attenuation of many of the input signal frequencies, and an
average will go to zero when the input frequency is fs/2.  In particular, to realize
an improvement in the SNR and the quantization error, equation (31.69) must be
used to limit the input bandwidth, B:

Bfand
K
f

K

f
B in

n
s

≤== 2      (31.69)
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Problem 31.27
Question:  Comment on the statement “The factor of two in the magnitude response of
Fig. 31.22 at low-frequencies simply indicates that the digital word length increases by 1-
bit.”

Answer:  A digital word length of 8-bits contains 256 unique numbers.  By increasing the
digital word length to 9-bits, the number of possible unique numbers that can be
represented increases to 512.  In fact, any digital word that increases by one bit can now
represent twice as much information.  Figure 31.22 demonstrates this by showing the
peak magnitude as twice the magnitude of the word.



1

Gexin

31.28: What is the magnitude response of 32 −− + ZZ ?

Solution for 31.28:

Let ( )
3

32 1
Z

ZZZZH +=+= −−

This transfer function has 3 poles at origin and one zero at Z= -1.

The magnitude of this transfer is:

( )
polestocesdisofoduct
zerostocesdisofoductZH

__tan__Pr
__tan__Pr=

At DC , distance to zero is 2, the distance to poles is 1. We get ( ) 2=ZH  at DC .

At 4/sf  or 4/3 sf , distance to zero is 2 , the distance to poles is 1. So ( ) 2=ZH
at 4/sf  or 4/3 sf .
At 2/sf , distance to zero is 0, the distance to poles is 1. We get ( ) 0=ZH  at 2/sf .
The magnitude response of the transfer function is shown below:

                                 )(ZH
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                       2
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31.29   Repeat Example 31.15 if 16 ADC outputs are averaged, that is K=16. 
 

From Example 31.15, determine the SNR of the data converter (8-bit ADC 
clocked at 100MHz) with 100ps of peak-to-peak jitter in the input sampling clock.  
Assuming the ADC’s input is a full-scale sinewave at 25MHz, and the clock jitter 
has a Gaussian PDF. 
 
The SNR is 

 
NoiseRMS

V
SNR p 2

log20=   

Where the RMS noise is the sum of the quantization noise and the RMS clock 
jitter. 
 
First the quantization noise for averaged ADC outputs, from equation 31.51 is 
  

( ) mV
K
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V
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8, ==
−

=⋅= −+ . 

  
 Then the clock jitter for a Gaussian PDF is found using equation 31.47 
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 Then the RMS voltage associated with clock jitter is 
 
   mVPjitter jitterAVGRMS 39.1, == . 
 

The RMS noise is then the sum of the RMS jitter and the quantization noise.  To 
add two RMS values, the values must first be converted to power, summed, and 
then converted back to an RMS value by taking the square root. 

 
  .45.1423.039.1 22

,
22 mVmVVjitterRMSNoise RMSQeRMS =+=+=  

 
 Finally 

  dB
mV

SNR 26.51
45.1

275.0log20 ==  

   
Notice by sampling 16 ADC outputs the quantization noise is reduced by about a 
fourth, the clock jitter remains the same, and the SNR is increased. 
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Problem 31.30
Jim Slupe

31.30 How accurate does an 8-bit ADC have to be in order to use a digital filter to
average 16 output samples for a final output resolution of 10-bits (see Eq.
[31.53]).  Assume the ideal LSB of the 8-bit converter is 10 mV.  Your answer
should be given in both mV and % of the full-scale.

Answer:
If K  = 16 then the increased resolution from sampling is 10 log K divided by 6.02
or 12.04 / 6.02 or 2 using equation 31.53.  This in turn yields an effective 10 bit
final resolution.  If an LSB is 10 mV then the full range of the ADC is:  (28 – 1) *
10 mV or 2.55 volts.  Now if this same voltage range is divided by 210 – 1 the size
of an LSB is 2.49 mV or 0.098 % of full scale.

This value can be put back into equation 31.1 as a way of testing the result.  The
following result is obtained:

dB
mV

VSNRIDEAL 96.61
12/49.2
2/275.1log*20 ==

or the ideal SNR for a 10-bit  ADC.  This is something of a circular argument, but
it does prove out the consistency of the equations.  Unfortunately it doesn’t end
there.

As stated in the text: “The ADC output should, ideally, change in increments of
the exact LSB voltage.  In reality, the changes will be different from the ideal
output levels (as just discussed.)  In order to achieve an increase in the number of
final bits, the output of the ADC must be accurate (its actual levels must be
spaced from the ideal levels) to within

NincNfinal
LSBVrefVref

2
1*)5.0(

2 1
±=−−+±

+
(31.75)

where no averaging (Ninc = 0 and K = 1) means the ADC is at least 0.5 LSBs
accurate.”  Therefore the actual accuracy requirement of the ADC is:

mVmV 25.1
2
1*)10*5.0(

2
±=±  or %049.0± of full scale
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31.31 If a DC signal is applied to a data converter can a digital averaging filter be used to
increase the system’s resolution?  What about if a dither signal is added to the DC input?
Use simple time-domain drawings to illustrate your answers.

Figure 1 and 2 show the outputs of the ADC and digital averaging filter.  When a DC
signal is applied to the ADC the digital code with the closest voltage representation is the
resulting output.  The averaging filter constantly averages the same Nth digital code from
the output of the ADC.  As seen in figure two no increase in resolution is realized, where
the Nth digital code of the ADC is equal to the Xth digital code of the averaging filter.
Then digital averaging filter can not increase the system’s resolution if a DC signal is
applied to the input.

In figure 3 dither is added to the ADC DC input signal.  The amplitude of the dither is at
least one LSB, and it is centered about the DC input signal.  Figure 4 shows that by
averaging the dithered DC signal a closer digital representation of the original signal is
realized.  The X+1 digital code is a more accurate representation of the DC input signal
than the Xth digital code in figure 2.  Therefore, adding dither to a DC input signal allows
the digital averaging filter to increase the resolution of the system.

N

N+1

ADC DC input

ADC digital output

t

Figure 1

X

X+2

t

Figure 2

Averaging FilterADC

X+1
ADC DC input

N

N+1

t

Figure 3

X

X+1

t

Figure 4

Averaging FilterADC ADC input with dither

Original ADC input

Average over time

X+2

Original ADC input
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Problem 31.32:
Name three characteristics of all digital filters.

1) All digital filters are periodic with sampling frequency.

2) In order for a digital filter to be practical (can be implemented) the number of poles in its transfer
function must be greater than the number of zeros in its transfer function.

3) A pole or zero at the origin of the Z-plane, in a digital filter’s transfer function, does not affect the
magnitude response of the digital filter.
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Question: #31.34

The magnitude response shown in Fig. 31.34 becomes infinite as the input
signal approached DC. Since the filter is digital, what is the maximum output of
the filter?

Solution:

The maximum output of an ADC, using a two’s complement binary offset
format is equal to: (VDD – 1 LSB), and is represented in Fig 31.37 in the text as
0111 1111. This represents +127 in two’s complement format or 1.494V for the
particular ADC as described in Fig. 31.37.

If the ADC is connected to a digital filter, the digital filter will saturate, (i.e.
reach maximum value), at DC to 1111 1111, assuming that filter contains the same
number of bits as the ADC output and that there is a summing feedback loop in the
digital filter.



Problem 31.35  Show that the peak (+127) and valley (-128) amplitudes of  the two’s
complement signals in Fig. 31.37 sum to –1.

Solution: In two’s complement, +127 (8 bits) is 0111 1111; -128 (also 8 bits) is
1000 0000. Therefore the sum (still 8 bits) is:

0111 1111
1000 0000
------------
1111 1111

In two’s complement, 1111 1111 is indeed –1. QED



Bob Moehrke EE515 (bmoehrke@amis.com)

Question 31.36

Summarize the method of changing a number from binary-offset to two’s complement.  Demonstrate
addition and subtraction using two’s complement numbers.  Show how, in two’s complement, 8, 33, and
111 sum to 152.  Assume a 10-bit word size.

Going from binary-offset to two’s complement is done by complimenting the MSB of the word.  Using 4
bit numbers, adding 2 & 3 (=5) is done simply by normal binary addition:

  0010
+ 0011
  0101

Subtracting 2 from 3 (=1) is done by first complimenting the number to be subtracted.  This is done by
complimenting each digit and then adding one.  This complimented number is then added to the other
number to get the final result of the subtraction:

  0011
- 0010  ->  1101  ->  (+1) = 1110  and changing the “–“ to a “+”:

  0011
+ 1110
  0001

Using a 10-bit word size, 8 + 33 + 111 = 152:

  0000001000
  0000100001
+ 0001101111
  0010011000



Prob 31.37

Find the transfer function for a digital filter that sums 16 inputs and then outputs the total.  Then, 
given a sampling frequency of 100MHz, plot the magnitude response of the filter.

Y z( )
X z( )

1 z 1−+ z 2− ....+ z 15−+:=

H z( )
1 z 1−−( )
1 z 1−−( ) 1 z 1−+ z 2−+ .....+ z 15−+( )⋅:=

So, the final transfer function, H(z), is given by:

H z( )
1 z 16−−

1 z 1−−
:=

Substituting: 
j 1−:= fs 100 106⋅:=

z fin( ) e
j 2⋅ π⋅

fin
fs

⋅
:=

We now have H defined as a function of z which is in turn a function of fin, and fs

H z fin,( )
1 z fin( ) 16−−

1 z fin( ) 1−−
:=
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Magnitude Response of H(z)

H z fin,( )
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Problem 31.38  Comment on the benefits and drawbacks of using an averaging
                          filter with and without decimation.

With Decimation:
Benefits:
Using averaging filter with decimation reduces the sampling frequency from
fs to fs/K, where K is a number of input samples used for averaging to increase
the resolution of data converter.  The lower sampling rate causes power
dissipation to be smaller than before decimation.  Also, circuit designing can
be simpler.

Drawbacks:
The maximum amount of attenuation or the ratio of main lobe to first side lobe
approaches the limit of 13.5 dB as averaging factor K increases.  To obtain an
attenuation greater than 13.5 dB at frequencies above fs/K requires cascading
of averaging filter stages.  Sampling frequency coming out of the final stage can
be quite low, from fs/K to fs/KL, where L is the number of stages ; this in turn
causes a narrow input bandwidth that is not very useful.  Also, drooping at the
maximum input bandwidth is not reduced after cascading the required number of
averaging filter stages.

Without Decimation:
Benefits:
The maximum attenuation increases without limiting the maximum input frequency
bandwidth as in the case of cascading the averaging filters with decimation.

Drawbacks:
Greater droop exists at the maximum input bandwidth than with decimation.
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31.39 Verify the z-domain function specified by Eq. (31.100) has a frequency
response given by Eq. (31.101).  How are the typical input and output
signals in the time domain related for this filter?

Eq. (31.100) is the transfer function of a cascade of L averaging filters.
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The 2 in the numerator and denominator cancel.  Now multiply the top and

bottom by 
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Assuming this transfer function is implemented as a cascade of moving average
filters (rather than a cascade of accumulate-and-dump circuits), the typical output
is delayed by sTKL ⋅⋅  (constant delay, therefore linear phase), and the output
frequency is equal to the input frequency (no decimation has occurred).

A sequence with K=3 may be visualized as follows.  Only two stages are shown
(L=2):

L+++++++++ )9()8()7()6()5()4()3()2()1( XXXXXXXXX

[ ] [ ] [ ] [ ]L)6()5()4()5()4()3()4()3()2()3()2()1( XXXXXXXXXXXX +++++++++++

L+++++++++⇒ )9()8()7()6()5()4()3()2()1( 111111111 XXXXXXXXX

First Stage

[ ] [ ] [ ] [ ]L)6()5()4()5()4()3()4()3()2()3()2()1( 111111111111 XXXXXXXXXXXX +++++++++++

Second Stage

L+++++++++⇒ )9()8()7()6()5()4()3()2()1( 222222222 XXXXXXXXX

...

...

...
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Problem 31.40
Question:  What is the magnitude response of (1-z-1)3.  Sketch a block diagram
implementation for this filter.

Answer: A simple comb filter is (1-z-1) and can be written as

( )
z

z
zz

z
z

zzH 11111)( 1 −=−=−=−= −

The following equation is an example of how to determine the zeros of H(z).

11 0 =⋅ je

From this example, an angle of 0 produces a 1.  This 1 indicates a zero in H(z).
Therefore, the zeros will be located at each of the following: 0 (or DC), fs , 2fs , 3fs , etc.
A plot of the z-plane is shown in Figure 1.

Figure 1: A Simple Comb Filter with H(z)=1-z-1

Now, three simple comb filters cascaded together can be written as
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The z-plane of this equation is shown is Figure 2.



Figure 2: A Comb Filter with H(z)=(1-z-1)3

This filter has the effect of averaging the digital signal.  The general frequency response
of an averaging filter is given as 2L.  In this example, L = 3, therefore 2L = 8.  An
example of this is shown below in Figure 3.

Figure 3: Magnitude Response of Cascaded Comb Filter

A block diagram of a single comb filter is shown in Figure 31.50 of the text.  A cascade
of three comb filters cascaded is shown below in Figure 4.



Figure 4: Block Diagram of Cascaded Comb Filter
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31.41: Re-sketch Fig.31.53 if, in each transfer function H(Z), a pole is added at .DC

Solution for 31.41: The zero at DC  will be canceled due to the addition of pole at .DC

The magnitude response of the transfer function is

polestocesdisofoduct
zerostocesdisofoductZH

__tan__Pr
__tan__Pr)( =

For K=3:
At DC point, the distances from DC point to two zeros are all equal to 3 . While the
distance from DC point to pole is equal to 1.
We get 3)( =ZH .

At 3/sf  and 3/2 sf points, ie. zero points, 0)( =ZH .

At 2/sf  point, the distances to zeros are all equal to 1. We get 1)( =ZH .

The frequency response for K=3 is shown below:

              3         )( fH
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2
sf

  
3

2 sf
       sf                 )(HZf

The Z-plane plot for zeros and poles is shown below:
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For K=4:

At DC point, the distances from DC point to three zeros are equal to 2 , 2  and 2
respectively. While the distance to pole is equal to 1.
Thus 4)( =ZH  for DC.

At 4/sf , 4/2 sf  and 4/3 sf  points, ie. zero points, 0)( =ZH .

The peak amplitude value for the side lobe is ( ) 12222 ≈


 +⋅−

The frequency response plot for K=4 is shown below:
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Here is the Z-plane plot for poles and zeros.
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For K=16:

The transfer function is
1

11)(
16
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−
⋅−=
ZZ

ZZH

At DC point, .1=Z  The magnitude is given as follows:

16)
1

11(lim)(
16

16

1 =
−

⋅−= → ZZ
ZZH Z .

At 16/sf , 16/2 sf  and … 16/15 sf points , ie. the zero points, the 0)( =ZH .
The frequency response plot for K=16 is shown below:

      )( fH
      16

                                                                                              )(HZf

               16/sf                                           16/15 sf

The Z-plane plot for poles and zeros is shown below:
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31.42 Show the problem with not using a MUX at the input of the adders in Fig. 31.55. 
 

The MUX at the input of each integrator stage in Fig. 31.55 bit extends the input 
binary number to the same number of bits as the output of the integrator.  This bit 
extending is necessary because the integrator output is feedback and added to the 
MUX output.  When adding 2’s complement binary numbers each number must 
have the same number of bits or the result will be incorrect.   
 
For example, when adding a 6-bit and a 4-bit 2’s complement binary numbers the 
result is incorrect without bit extending the 4-bit binary number. 
 
x = 00 0111 = 7 (decimal) 
y =      1000 = -8 (decimal)   
 
Without bit extending 
x + y = 00 0111 
       1000 
  00 1111 = 15 (2’s complement) 
   
With bit extending 
x + y = 00 0111 
  11 1000 
  11 1111 = -1 (2’s complement) 
 
The bit extension is necessary to account for the sign of the 2’s complement 
number especially when adding a positive and negative number. 
 
Note that the first MUX in the filter also converts the output of the ADC from 
binary offset to 2’s complement in addition to bit extending. 
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Problem 31.43
Jim Slupe

31.43 Is it possible for the accumulate-and-dump circuit to output a spectrum with
aliasing if the input signal is bandlimited to fs?  Why or why not?

Answer:
If the input signal has components as high as  fs then this clearly violates
Nyquist sampling requirements, but that aside, energy is being put into all of the
lobes (assuming an AAF on the input).  In previous examples, even though lobes
existed above B, we limited the energy to < B and so the lobes were, in effect,
empty.  Since resampling causes folding it is clear that energy above  (fs/2)/K will
be reflected into the baseband.



EE515:  CMOS Mixed-Signal IC Design

Problem 31.44
Jim Slupe

31.44 In the discussions in this chapter we assumed the digital signals are much larger
than an LSB of a data converter.  What happens if this is not the situation for the Sync
averaging filter?

Answer:   The input to the Sinc filter appears as a DC signal if the ADC output is
constant.  The output of the ADC data converter, the input to the Sinc filter, will not vary
if the input signal change is less than an LSB. If the input is varying a little amount so a
few LSBs are changing then the quantization noise isn't going to be white and the result
of passing the data through the Sinc filter may not cause a reduction in quantization
noise.*

*The answer comes from Professor Baker.   I was confused by the question and had to
ask Professor Baker for help (this one is an easy ‘y’ for the checker).
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Problem 31.45
bbergeso@poci.amis.com

Question 31.45:

Is it possible to decimate a digital waveform down to 2B and then later, with some other hardware or
software digital filter, remove all of the aliased signal form the desired signal?

Answer:

No, you could not remove the aliased signal from the desired signal.  When decimating down to 2B the
aliased spectrum overlaps the desired spectrum (see Fig. 31.58b). Once this overlapping occurs there is no
way to distinguish the aliased spectral content in 0 to B from the desired.



31.46 Suppose the waveform shown in Fig. 31.66 is the input to a decimator.
If K = 8, what would the output of the decimator look like? Use
integers to illustrate your understanding.

Assume the pattern of inputs in Fig. 31.66 is of the pattern:
10,11,12,13,14,15,16,17,15,13,11,9,7,5,3,1. Also assume that the
initial output is 0 and that the pattern is clocked into a decimator
at fs. The decimator adds up K samples, divides the sum by K
(by truncating the log {base 2} K least significant bits), and outputs
the result at fs/K. The output of the decimator will be
0 (initial output), 13 ([10+11+12+13+14+15+16+17]/8), and
8 ([15+13+11+9+7+5+3+1]/8).
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Question 31.47
Richard Friel
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Question: #31.47

Suppose a digital word is clocked into a hold register and held for 8 clock
cycles before another word is clocked into the register. Is this similar to the
analog sample and hold? If the sampling rate (clock frequency) is increased by a
factor of 8 after the hold register, what kind of digital filter can we think of the
hold register as being?

Solution:

When an analog signal is sampled, the spectral response is equal to the
Fourier Transform of the time domain representation of the input signal
multiplied by the time domain representation of the sampling signal. An example
is shown in (Eq. 30.16) and Fig. 30.27 and Fig. 30.28 in the text. This results in a
Sinc function spectral response. In addition, the input signal spectrum becomes
periodic with respect to the sampling signal spectrum. Aliasing is a concern when
an analog signal is sampled.

When a digital word is clocked into a hold register for 8 clock cycles, this is
similar to sampling and holding the digital input and the same spectral analysis
and response is employed as when sampling and holding an analog signal. The
spectral response of the input signal becomes periodic with respect to the spectral
response of the sampling signal as shown in Fig. 31.69, node (b) and Fig. 31.70(b)
in the text. The clock frequency band must be as least 2B of the input band, B, in
order for aliasing to be minimized.

If the sampling rate (clock frequency) is increased by a factor of 8 after
the hold register, this is similar to the first stage input of an interpolation digital
filter as shown in Fig. 31.71, with the divide by 4 block replaced by a divide by 8
block. The spectral response of the input holding register in the digital
interpolation filter is shown in Eq. 31.117 through Eq. 31.119, with the 4 replaced
by a value of 8.

  



31.48 Show that the digital resonator of Fig. 31.76 can be modified, if we add a multiplier to the circuit,
so that Eq. (31.120) can be implemented.

Solution:
Given Eq.(31.120), HD(Z) =                              1                         =                         z2                                   

    1-2cos[2π  f/fs] · z-1 + z-2 z2 - 2cos[2π  f/fs] · z1 + 1

Fig. 31.76 already incorporates the equation H(z) =       1           .  The missing cosine term is added 
1 + z-2

in the figure below.
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Question 31.49

It is more correct to write our DAI continuous time input signals in Fig. 31.78 as

v1(t) + VCM and v2(t) + VCM

Knowing this rederive Eq. (31.130)

If the above substitutions are to be made, equation 31.126 becomes

Q1 = CI (VCM - v1 [(n-1)Ts] - VCM )

and equation 31.127 becomes

Q2 = CI (VCM – v2 [(n-1/2)Ts] - VCM )

As before, Q1 - Q2 is transferred to the feedback capacitor the next time φ1 is closed.  This creates a change
in the output voltage Vout described by equation 31.128.  It can easily be seen that the old quantity Q1 - Q2
and the new quantity Q1 - Q2 are identical.  Equation 31.128 then remains the same.  Equation 31.129 is the
z-domain form of equation 31.128, and equation 31.130 is an algebraic version of 31.129.  These last two
equations (31.129 and 31.130) are the same as before as well.



31.50 
Jeremy Rice

Using: V1 V1 Vcm+

V2 V2 Vcm+

Rederive Eq 31.13

Vout z( )
Ci
Cf

V z( )1 z

1
2⋅ V z( )2−

1 z 1−−
⋅:=

Start with the charge on the capacitors,

Q1 Ci Vcm V n
1
2

−


Ts
1 Vcm+


−


⋅:=

Q2 Ci Vcm V n Ts⋅( )2 Vcm+( )− :=

From which, it is immediately obvious that the Vcm term drops out

Vout n Ts⋅( ) Vout n 1−( ) Ts⋅[ ] Cf⋅− Ci V n Ts⋅( )2− V n
1
2

−


Ts⋅
1+


⋅

Vout z( ) 1 z1−( )⋅
Ci
Cf

V1 z

1−
2⋅ V2−





⋅

Vout z( )
Ci
Cf

V z( )1 z

1−
2⋅ V z( )2−

1 z 1−−
⋅

Which is the same as Eq. 31.1, so it can be said that common mode signals will be removed by 
the circuit.
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31.52 Show the detailed derivation of Eq. (31.138).

Eq. (31.138) relates the inputs to the outputs of a feedback modulator, where
quantization noise is represented in the z-domain by E(z).

)(
)()(1

1)(
)()(1

)()( zE
zBZA

zX
zBzA

zAzY ⋅
⋅+

+⋅
⋅+

= (31.138)

Figure 1 (similar to Fig. 31.82) shows the block diagram of a feedback modulator.

To derive the transfer function of Eq. (31.138), we must examine the values at
nodes 1, 2, 3, and 4 by going around the loop as follows:

)()()1( zBzY=
)()()()2( zBzYzX −=

)()()()()()3( zBzAzYzAzX −=
)()()()()()()4( zEzBzAzYzAzX +−=

Because node 4 is also )(zY , we can equate the above to )(zY and solve.

)()()()()()()( zEzBzAzYzAzXzY +−=

)()()()()()()( zEzAzXzBzAzYzY +=+

[ ] )()()()()(1)( zEzAzXzBzAzY +=+

[ ])()()(
)()(1

1)( zEzAzX
zBzA

zY +
+

=

)(
)()(1

1)(
)()(1

)()( zE
zBzA

zX
zBzA

zAzY
+

+
+

= (31.138)

A(z) +

B(z)DAC

+

ADC

E(z)

Y(z)
Out

X(z)
In

1

2 3 4

-

Figure 1  Block diagram of a feedback modulator.
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31.53 Summarize the advantages and disadvantages of predictive and noise-
shaping data converters.

Both predictive and noise-shaping modulators use oversampling, which increases
the final converter resolution.

A predictive modulator attempts to feedback an analog signal with the same value
of the input signal.  This drives the output of the summer (see Fig. 31.81) toward
zero, reducing the required input range of the ADC.  However, in order to recover
the input signal, the output of the predictive modulator must be passed through an
analog filter with a transfer function identical to that of the feedback filter used in
the modulator.  This required precision of the analog components directly limits
the attainable resolution.  Another disadvantage is that the predictive modulator
shapes both the input signal spectrum as well as the quantization noise.

A noise-shaping modulator feeds back the average value of the input, which can
be filtered to reduce the accuracy required of the analog components.  Because of
this filtering (averaging), the analog components in the forward path (Fig. 31.81)
require less accuracy.  However, the output of the DAC in the feedback path does
not experience this averaging, and therefore, the DAC must be linear to the
required accuracy of the entire converter.  No precision filter or analog
components are required (other than the DAC).  Another advantage is that the
signal transfer function (STF) approaches unity while the noise transfer function
(NTF) is shaped such that the energy in the spectrum is moved out of the
bandwidth of interest.
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