
David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 30.1
Question: Qualitatively, using figures, show how impulse sampling a sinewave can result
in an alias of the sampled sinewave at a different frequency.

Answer: Impulse sampling is composed of a series of finite pulses, in other words, time-
limited. Since these pulses are time-limited, they cannot be simultaneously bandwidth-
limited. So, all real pulses have infinite spectra. This is shown below with a qualitative
plot of the spectrum of a rectangular pulse.

As a result, the spectra
the Nyquist frequency
is created (unless prop
spectral overlap. The
the spectral content is
aliasing in the frequen

Consider the time dom
shown below (in this e

Frequency Domain
Time Domain

 of real impulses have infinite “tails” that always extend beyond
 and overlap other spectra with their own infinite “tails.” An alias
erly filtered) at regions in the frequency domain that contain
center of this overlap is referred to as the folding frequency, since
folded back at these frequencies. This intuitive understanding of
cy domain can be reinforced with an example in the time domain.

ain of a fundamental signal and the associated sample pulses
xample, the signal is 12 MHz and the sample rate is 50 MHz.)

The sampling points that coincide with the fundamental signal, of course, fit the
fundamental frequency. But, these points also fit an infinite number of other frequencies.
These spurious sinewaves are aliases of the fundamental frequency. One example alias
signal that fits these sample pulses is shown below.

In this particular example, the alias signal is 38 MHz. Converting this plot to the
frequency domain would produce spectral spikes on the fundamental frequency and on
the alias frequency.

Gexin
Ghuang@uidaho.edu

Problem 30.2:
What does linear phase indicate?

Solution for problem 30.2:
For a sine wave signal at frequency f (unit: HZ), its phase delay ()fθ (unit: radian)

through a filter is related to its time delay dt (unit: second) by

() πθ 2⋅⋅= ftf d

If the filter has linear phase response, that is, in the phase response plot,
()
f

fθ
 is

constant. Thus the time delay
()

π
θ

2⋅
=

f

f
td will be constant independent of signal

frequency. Thus linear phase indicates constant time delay.
In many applications, it is desirable that a filter has a linear-phase characteristic. In
particular it is important for speech and music processing and for data transmission
wherein nonlinear phase would give unacceptable signal distortion.

Brandon Roth
brandonroth@micron.com

30.3 What does multiplying a signal by ej2πf(-t

d
) indicate? How does the magnitude of the

resulting signal change? How does the phase change?

Multiplying a signal by ej2πf(-t
d
) shifts the signal in time. The multiplied result is delayed

by the value of td.

 inv)(2 dtj

inout evv −= π

 The phase shift is related by

 d
od ft

T
t

phaseshift πθ 2360 =•==

Where td is the delay, and T is the period of the input signal. Dividing td by T
gives the percentage of delay in one cycle, and then multiplying by 360 degrees
gives the phase shift.

Multiplying by ej2πf(-t
d
) does not change the magnitude of the resulting signal.

From euler’s theorem:

 θθθ sincos je j ±=±

 let θ = j2πf(td) then
)sin(cos θθ jvv inout −=

 Taking the magnitude of vout:
)sin(cos)sin)1((cos 222222 θθ +=−−= ininout vvv

From trigonometry
 1sincos 22 =+ θθ

 then

inout vv =

Thus the magnitude of the input equals the magnitude of the output or in other
words multiplying by ej2πf(-t

d
) does not change the magnitude of the signal.

Delay circuit

Multiplying by ej2πf(-t
d
) does change the phase. The change in phase associated with

multiplying by ej2πf(-t
d
) is found by using Euler’s theorem and then finding the phase angle

of the resulting vector.

From above

θθθ sincos je j ±=±

phase angle =
{Re}
{Im}tan 1−=φ or

θ
θ

φ
cos
sintan 1−= where θ = j2πf(-td).

 then

θθφ == − tantan 1

 The phase resulting from multiply by ej2πf(-t
d
) is simply the delay 2πf(-td).

EE515: CMOS Mixed-Signal IC Design

Problem 30.4
Jim Slupe

30.4 Show, in the time-domain, the input, output of the transmission line, and output of
the comb filter in Fig. 30.11 if the input signal is a sine wave with a peak amplitude of 1
V and a frequency of 100 MHz. Show the two 500 � resistors average the input signal
and the output signal of the delay line (transmission line).

Figure 1

SPICE listing

* Modified Figure 30.12 CMOS: Mixed-Signal Circuit Design *

*WinSPICE command scripts
*#destroy all
*#run
*#plot Vin Vtout Vout

Vin Vin 0 DC 0 SIN(0.5 0.5 100MEG 0 0)

Rtout Vtout 0 50
Rt1 Vtout Vout 500
Rt2 Vin Vout 500
T1 Vin 0 Vtout 0 ZO=50 TD=5n
.tran 0.1NS 30NS 1NS
.end

Figure 1 is a reproduction of the comb filter in Fig. 30.11. The SPICE
listing shown above was used to generate the plots shown in figures 2A
through 2C.

Figure 2A (Vin) is a 100 MHz sine wave driven into the comb filter.

Figure 2B, the output of the delay line, can be seen as a signal 180� out-of-
phase from the input signal as one would expect. The length of the
transmission line is 1/2 a wave length of a 100 MHz signal.

Figure 2C, the output of the comb filter, is shown as the decaying voltage
that settles to the average of the two signals Vin and Vtout. This is as
expected since the delay line creates a situation where two sine waves
centered around 0.5 Volts, of equal magnitude, 180� out-of-phase, are
summed together at the junction of the two 500 ohm resistors.

If one were to change the sine wave to any of the frequencies (100, 300, 500,
etc.) where the frequency domain plot of Figure 30.12 goes to zero, one
would find a similar decaying output centered about 0.5 Volts. At each of
these frequencies, the length of the transmission line is such that it creates a
phase shifted image of the input signal that is a multiple of 180� that, when
combined by the 500 ohm resistors, leaves only the 0.5 Volt DC component.

One other point of interest: In the SPICE output of Figure 2C, one can see
the behavior before steady state is reached. Vout between 0 and 5 nsec is
composed entirely of the DC component and that part of Vin that does not

pass through the transmission line. Shown below in Figure 3 is the value of
Vout at 2.5 nsec.

Figure 3

At the instant in time shown in Figure 3 the circuit looks like that shown in
Figure 4 below:

Figure 4

Where the 50 ohm resistor in parallel with the 50 ohm transmission line is
replaced by a 25 ohm resistor.

Problem 30.5 Regenerate Fig. 30.19 if the switches are closed for 5ns instead of 100ps.

Solution: Replace the pulse width parameter for Vclock of 100p with 5n.

* Problem 30.5 CMOS: Mixed-Signal Circuit Design *

.tran .1n 500n 0 .1n UIC

*WinSPICE command scripts
*#destroy all
*#run
**#plot Clock
*#plot Vin Vout

Vin Vin 0 DC 0 Sin 0.75 0.75 5MEG
Vclock Clock 0 DC 0 Pulse 0 1.5 0 0 0 5n 10n
Vtrip Vtrip 0 DC .75

Ebufin Vinb 0 Vin Vinb 100MEG
S1 Vinb Vins CLOCK VTRIP switmod
Rout Vins 0 10k
Ebufout Vout 0 Vins Vout 100MEG
.model switmod SW

.end

This figure appears to have twice the frequency of the previous version. However, close
Inspection of the plot reveals that the pulse in the previous version rises and falls on the
10ns period, whereas the second version rises every 10 ns and falls 5 ns later.

QED

EE515: CMOS Mixed-Signal IC Design
Brian Bergeson
Problem 30.6
bbergeso@poci.amis.com

Problem 30.6:

What sets the minimum resolution of an FFT in a SPICE spectral analysis?

Answer:

An FFT is calculated in SPICE using the “spec” (spectral analysis) command. The minimum resolution
allowed when using the spec command is set by the transient simulation time.

On page 16 of CMOS: Mixed-Signal Circuit Design, equation 30.6 defines the minimum resolution for the
SPICE “spec” command as:

FFT_resolution >= 1 / simulation_time

For example, if a circuit is simulated for 500ns, then the minimum resolution allowed for the SPICE spec
command would be 1 / 500E-9 = 2E6 or 2MHz.

30.7

Explain why the sinewave in Fig. 30.19 is "double sampled".

The sinewave in Fig. 30.19 is a sampled sinewave produced by using discrete time
steps of 100 ps in the SPICE simulation of the impulse sampler. Evidence of this
sampling is shown by the small stair-step pattern of the input sinewave. The
sinewave is again sampled at 100 MHz to produce the output of the impulse
sampler.

EE515: CMOS Mixed-Signal IC Design

Richard Friel
Problem 30.8

 Rich_Friel@AMIS.COM

Problem #30.8 Explain why z is used in signal processing. What does multiplying a
 digital signal by z-1 do?

Why is z is used in signal processing?

The counterpart of the Fourier transform for continuous time signal analysis is the
z-transform, for discrete-time signal analysis. The z-transform simplifies linear time-
invariant discrete-time (LTID) system analysis and offers insight into system behaviors in
terms of frequency-domain concepts such as frequency response and filtering. The
Fourier transform converts integro-differential equations into algebraic equations. In a
similar manner, the z-transform changes difference equations into algebraic equations,
simplifying the analysis of discrete-time systems. Similar to the difference equation,
(Eq. 30.10), being transformed into (Eq. 30.14) using the z-transform.
 The z-transform is a tool by which a signal x[k] is expressed as a sum of it’s spectral
components of the form zk . If H[z]zk is the system response to input zk, we add the
system response to all exponential components of x[k] to obtain the system response,
y[k], using convolution in time domain or multiplication and the inverse z-transform in
the frequency domain.1

What does multiplying a digital signal by z-1 do?

The Fourier transform of the continuous signal x(t) that is time sampled to create
y(t) in (Eq. 30.10), results in the frequency domain response Y(f). This shows the
individual frequency components that make up the sampled time domain signal y(t) and
the exponential terms that are summed, which correspond to each sample period. The
exponential terms represent a phase shift in frequency domain or time delay in the
temporal domain. z is defined to be a phase shift or delay that corresponds to the
sampling period Ts as shown in (Eq. 30.12).

When x(k) in (Eq. 30.14) is multiplied by z-1, this delays every term of the
summation, in the output, Y[z], by one sampling period, Ts, which results in the following
equation,

∑
∞

=

+−
=

0

)1(
)(Y[z]

k

k
zkx

A good example is given in Example 30.6 by studying the effect of z-1 on the Ideal
impulse sampler, which delays the output of the ideal sampler by one sampling period,Ts.

1 B.P. Lathi, “Linear Signals and Systems,” Berkeley/Cambridge Press, pp.377, 1992

Problem 30.9 Sketch the implementation of a circuit that will multiply a digital signal by
z-1.

Solution: Multiplying a signal by z-1 is the same as delaying the signal. A rudimentary
delay can be created by a D flipflop.

Bob Moehrke EE515 (bmoehrke@amis.com)

Question 30.10

Sketch the time-domain representation of the five signals shown in Fig. 30.29 on different plots.
Regenerate Fig. 30.29 if the input signal is a 1 V peak sinewave at 5 MHz and zero offset. Explain the
resulting plot.

Figure 30.29 shows a frequency plot of the output of a S/H of a 0.75 V (peak), 3 MHz sinewave centered at
0.75 V (-2.5 dB) and sampled (and held) at 100 MHz. Due to the 0.75 V offset there is a signal at DC (0
Hz); and due to aliasing there is signal content not only at 3 MHz, but also fS ± 3 MHz (97 and 103 MHz)
and 2FS – 3 MHz (197 MHz). Assuming the effects of double sampling are negligible, the magnitudes of
each signal content can be determined by taking into account the magnitude of the input waveform and the
attenuation of the sinc(πf/fS) function resulting from the sample and hold operation:

M(0) = 0.75 * sinc(π0/100) = 0.75 = -2.499 dB
M(3) = 0.75 * sinc(π3/100) = 0.7489 = -2.512 dB
M(97) = 0.75 * sinc(π97/100) = 0.02316 = -32.70 dB
M(103) = 0.75 * sinc(π103/100) = 0.02181 = -33.23 dB
M(197) = 0.75 * sinc(π197/100) = 0.01140 = -38.86 dB

These values can be seen (respectively) in the following plots, Figures 1-5:

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

There is no offset in the input waveform used to regenerate Fig. 30.29, so the signal at DC (0 Hz) is not
present. As before, due to aliasing there is signal content not only at 5 MHz, but also fS ± 5 MHz (95 and
105 MHz) and 2FS – 5 MHz (195 MHz). Again, the magnitudes of each signal content can be determined
by taking into account the magnitude of the input waveform and the attenuation of the sinc(πf/fS) function
resulting from the sample and hold operation:

M(5) = 1 * sinc(π5/100) = 0.9959 = -0.03575 dB
M(95) = 1 * sinc(π95/100) = 0.05242 = -25.61 dB
M(105) = 1 * sinc(π105/100) = 0.04742 = -26.48 dB
M(195) = 1 * sinc(π195/100) = 0.02554 = -31.86 dB

After looking at the plot in Figure 6, it can be seen that the magnitude and location of each signal matches
the calculated values.

Figure 6

SPICE NETLIST for regenerating Figure 30.29:

* Regenerated Figure 30.29 CMOS: Mixed-Signal Circuit Design *

*Since using ideal components and no MOSFETs increase step size to 1ns
.tran .1n 2000n 0 .1n UIC
.options reltol=1u
.save Vout Vin

*WinSPICE command scripts
*#destroy all
*#run
**#plot Clock

**#plot Vin Vout
*#linearize Vout Vin
*#spec 0 200MEG 500k Vout Vin
* Set noise floor at -120 dB (1uV)
*#let voutdb=db(Vout+1e-6)
*#let vindb=db(Vin+1e-6)
*#plot voutdb vindb

Vin Vin 0 DC 0 Sin 0 1 5MEG
Vclock Clock 0 DC 0 Pulse 0 1.5 0 0 0 4.9n 10n
Vtrip Vtrip 0 DC .75
VDD VDD 0 DC 1.5

Ein Vinbuf 0 Vin Vinbuf 100MEG

S1 VDD CLKB VTRIP CLOCK switmod
S2 0 CLKB CLOCK VTRIP switmod

S3 Vinbuf VinS CLOCK VTRIP switmod
Cs1 VinS 0 100p

S4 VinS Vout1 CLKB VTRIP switmod
Cout1 Vout1 0 10f

Eout Vout 0 Vout1 Vout 100MEG

.model switmod SW (RON=10m)

.end

Problem 30.12 Using the models developed in this chapter to design a SPICE model for
 S/H of Fig. 30.31. Use the model to generate Fig. 30.29.

Fig. 30.12a Single-ended S/H circuit used to re-generate Fig.30.29.

 Fig. 30.12b is the SPICE output of Fig. 30.12a. The SPICE-model file is called
prob_30_12a.cir. Note that S3 and S4 above, ideally, switch at the same time.
In the SPICE file, sampling instant (off time of the clock) is very narrow to keep
the op-amp from drifting.
 Initially, S1 and S2 are closed while S3 and S4 are open; shortly after that, S1
is open, then S2 is open. Holding operation takes place when S3 and S4 are
closed while S1 and S2 are open. Sampling operation takes place from the
time that S1 starts to open until the time that S3 and S4 start to close.

Fig. 30.12b Output of single-ended S/H in Figure 30.31.

Ch

Vbp Vtp Vout

Vin

V13S1

S3

S4

S2

9e-11

Fig. 30.12c Output of the single-ended S/H after sampling a 3MHZ
 sinewave at 100 Mhz, re-creating Figure 30.29.

The SPICE file to generate Fig. 30.12c above is called prob_30_12b.cir. I had to set
noise floor RELTOL= 1nV to keep the noise down. All outputs amplitudes are
maintained the same as those shown in Fig. 30.29 in the text.

Tyler J. Gomm
tjgomm@micron.com

30.13 If VREF+ = 1.5 V and V REF- = 0 regenerate Fig. 30.33 using SPICE.
(Design a 3-bit ideal DAC model in SPICE.) The y-axis will be voltages
in decimal form.

The output voltage of a DAC can be represented using Eq. (30.25) as follows:

−
−

−
−

−−+ ++++⋅+⋅⋅−= REF
N

N
N

NNREFREFOUT VbbbbVVV)222(
2
1)(0

1
1

2
2

1
1 �

This is implemented in SPICE using a non-linear dependent source (a B source).
As stated in the text, for a 3-bit, ideal DAC, the statement that implements this
equation looks like:

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-v(vrefm))/8)*(v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm)

The terms BxL are logic signals that have values of 0 V or 1V. These are created
using two ideal switched in SPICE as shown in Figure 1.

The VDD/2 trip voltage can be created as follows:

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

The switch configuration is implemented using the following:

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod
SL 0 BXL trip BX Switmod
.model switmod SW

BX is the logic input, trip is
the tr ip vo l tage, set to
VDD/2. This creates an
output that is either 0 V or
1V, depend ing on the
input level.

Closed when BX > trip

Closed when BX < trip
BXL

1 V

Figure 1 Generating logic levels using two voltage-controlled switches.

This forces the inputs to well-defined logic levels. Each bit in the DAC is
instantiated (prior to the statement for the non-linear dependent source) as
follows:

X2 trip B2 B2L Bitlogic
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

The digital inputs can be created with simple pulse sources. The entire netlist, as
well as the WinSpice control statements is shown in Figure 2.

* Problem 30.13 CMOS: Mixed-Signal Circuit Design *

.tran 1n 80n 0 1n

*#destroy all
*#run
*#let bin2=b2+4
*#let bin1=b1+2
*#let bin0=b0+0
*#plot bin2 bin1 bin0
*#plot Vout
*#plot (Vout-VREFM)/(VREFP-VREFM)

VDD VDD 0 DC 1.5
VREFP VREFP 0 DC 1.5
VREFM VREFM 0 DC 0.0

VB2 B2 0 DC 0 pulse 1.5 0 0 200p 200p 39.8n 80n
VB1 B1 0 DC 0 pulse 1.5 0 0 200p 200p 19.8n 40n
VB0 B0 0 DC 0 pulse 1.5 0 0 200p 200p 9.8n 20n

X1 VDD VREFP VREFM Vout B2 B1 B0 DAC3bit

*** Start Ideal DAC Subcircuit ******************************

.subckt DAC3bit VDD VREFP VREFM Vout B2 B1 B0

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

*Change input logic signals into logic 0s or 1s
X2 trip B2 B2L Bitlogic
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-v(vrefm))/8)*(v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm)

.ends

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod
SL 0 BXL trip BX Switmod
.model switmod SW
.ends

*** END DAC Subcircuit *************************************
.end

Figure 2 Full SPICE netlist.

In order to recreate the same scale as Fig. 30.33, the y-axis has to be normalized
to the full DAC range. This makes the ‘steps’ in the graph equal to 1 LSB.

For the 3-bit ideal DAC, one normalized LSB = 1/23 = 0.125.

To prevent a divide-by-zero error when normalizing, the transient analysis may be
run without using initial conditions (UIC).

The non-normalized LSB for this particular DAC is:
(VREF+ - V REF-)/ 2N = (1.5 V – 0 V)/8 = 0.1875 V.

Figure 3 shows the DAC inputs and the non-normalized DAC output. Note that
the full DAC swing ranges from 0 V to VREF+ - 1 LSB, or from 0 V to 1.3125 V,
with exactly eight possible output levels.

Figure 4 shows the SPICE replication of Figure 30.33 in the text.

Figure 3 Ideal 3-bit DAC input (left) and non-normalized DAC output(right).

Figure 4 Normalized ideal 3-bit DAC output.

Tyler J. Gomm
tjgomm@micron.com

30.14 If, again, VREF+ = 1.5 V and VREF- = 0 sketch Fig. 30.33 for a one-bit
DAC. Note that the digital input code will either be a 0 or a 1 and the
analog voltage out of the DAC will be either 0 or 1.5 V. Using Eq.
(30.23) what is the voltage value of 1 LSB? How does this compare to the
value of 1 LSB we get from the sketch? Is Eq. (30.23) valid for a one-bit
DAC? Why? The 1-bit DAC will be a ubiquitous component in our
noise-shaping modulators in Ch. 32 (see Fig. 32.28).

A one-bit DAC (as defined in the problem) can be ideally implemented as two
switches connecting the output to VREF+ or VREF- (see Fig. 1). There is only one
control bit for switching between states, so the simplest method is to just toggle
between the rails. This will result in a wide-swing, full-range DAC.

This can be implemented using a comparator that switches to the rails at the
midpoint of the full range (see Fig. 2).

1-bit DAC

VREF+

VREF-

Digital input
code, b0

VOUT

Closed when b0 = 1

Closed when b0 = 0

VREF+

VREF-

VOUT

Figure 1 1-bit DAC block diagram and an ideal implementation.

VREF+

VREF-

Digital input
code, b0

VOUT
+

-
VREF+ + VREF -

2

Figure 2 Implementation of a 1-bit DAC using a comparator.

As shown in Fig. 3, this DAC, by definition, will simply switch between VREF+
and V REF- , based on the single-bit input. This can be compared to Fig. 30.33.

Using Eq. (30.23) the voltage value of 1 LSB is as follows:

LSBN
REFREF VVVLSB =

−
= −+

2
1

VVVLSB 75.0
2

05.11 1 =−=

The value of 1 LSB obtained from the sketch is 1.5 V, or twice the value obtained
from Eq. (30.23). Therefore, Eq. (30.23) does not apply to the one-bit DAC. This
is due to the way the wide-swing one-bit DAC is defined; that it switches across
the full range of input voltages.

A one-bit DAC could be implemented which would switch between VREF+ / 2 and
V REF- , forcing Eq. (30.23) to be valid, but the output range would be cut in half!

The correct equation for 1 LSB for the full-range DAC as defined is as follows:

LSBN
REFREF VVVLSB =

−
−= −+

12
1

For the DAC in this problem this equation yields:

VVVLSB 5.1
12
05.11 1 =

−
−=

0 1 Digital input code, b0

VREF+

VREF-

1 LSB

Figure 3 Transfer curve for an ideal 1-bit DAC.

This definition of a full-range DAC could be reflected back to a general N-bit
DAC, resulting in transfer curves similar to that shown in Fig. 4. Although this
DAC has the full range of output values, the LSB value is no longer a fraction
based on powers of two. (i.e.: 3-bit DAC has a normalized LSB = 1/7, rather
than 1/8.)

When working with DACs with more than a few bits of resolution, the loss of 1
LSB across the full range is miniscule, therefore it is mathematically easier to use
an LSB that is a fraction based on powers of two.

As stated in the problem, the 1-bit DAC will be a ubiquitous component in noise-
shaping modulators in Ch.32 (see Fig. 32.28). This figure shows the ideal (as
well as non-ideal) transfer curve for a 1-bit DAC.

000
Digital input code, b2b1b0

VREF+

VREF-

1 LSB

1/7

2/7

3/7

4/7

5/7

6/7

7/7

0
010 100 110001 011 101 111

VOUT - VREF-

VREF+ - VREF-

Figure 4 Transfer curve for an ideal full-range 3-bit DAC.

Problem 30.15 Using SPICE to implement an ideal 4-bit DAC and regenerate Fig. 30.36.

Fig. 30.15a Output of 4-bit DAC

Fig. 30.15b Inputs to 4-bit DAC

The SPICE listing of this 4-bit DAC is called prob_30_15.cir. Each step in Fig. 30.15a is
1 LSB= 1.5V/ 16= 93.75 mV. When input is 1111, the output is 1.5V – 1 LSB=
1.40625V.

* For problem 30.15, ideal 4-bit DAC *

.tran 1n 200n 0 1n UIC

*#destroy all
*#run
*#let bin3=b3+6
*#let bin2=b2+4
*#let bin1=b1+2
*#let bin0=b0+0
*#plot bin3 bin2 bin1 bin0
*#plot Vout

VDD VDD 0 DC 1.5
VREFP VREFP 0 DC 1.5
VREFM VREFM 0 DC 0.0

* Width of each bit
VB3 B3 0 DC 0 pulse 1.5 0 0 200p 200p 79.8n 160n
VB2 B2 0 DC 0 pulse 1.5 0 0 200p 200p 39.8n 80n
VB1 B1 0 DC 0 pulse 1.5 0 0 200p 200p 19.8n 40n
VB0 B0 0 DC 0 pulse 1.5 0 0 200p 200p 9.8n 20n

X1 VDD VREFP VREFM Vout B3 B2 B1 B0 DAC4bit

*** Start Ideal DAC Subcircuit ******************************

.subckt DAC4bit VDD VREFP VREFM Vout B3 B2 B1 B0

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

*Change input logic signals into logic 0s or 1s
X3 trip B3 B3L Bitlogic
X2 trip B2 B2L Bitlogic
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-v(vrefm))/16)*(v(B3L)*8+v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm)

.ends

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod

SL 0 BXL trip BX Switmod
.model switmod SW
.ends

*** END DAC Subcircuit *************************************
.end

Bob Moehrke EE515 (bmoehrke@amis.com)

Question 30.17

Repeat question 30.15 for an ADC.

30.15 Using SPICE implement an ideal 4-bit DAC and regenerate Fig. 30.36.

Using the SPICE example given in Figure 30.38 for an ideal 8-bit ADC and the SPICE netlist used to
generate Figure 30.39, the following SPICE netlist was created for an ideal 4-bit ADC.

SPICE NETLIST for regenerating Figure 30.39:

* Regenerated Figure 30.39 CMOS: Mixed-Signal Circuit Design *

.tran 1n 3000n 0 1n UIC

*WinSPICE command scripts
*#destroy all
*#run
**#let bin7=b7+16
**#let bin6=b6+14
**#let bin5=b5+12
**#let bin4=b4+10
*#let bin3=b3+8
*#let bin2=b2+6
*#let bin1=b1+4
*#let bin0=b0+2
**#plot clock bin0 bin1 bin2 bin3 bin4 bin5 bin6 bin7
*#plot clock bin0 bin1 bin2 bin3
*#plot Vin x1:outsh

VDD VDD 0 DC 1.5
VREFP VREFP 0 DC 1.5
VREFM VREFM 0 DC 0

Vin Vin 0 DC 0 Pulse 0 1.5 0 3000n
Vclock clock 0 DC 0 Pulse 0 1.5 0 200p 200p 4.8n 10n

*X1 VDD VREFP VREFM Vin B7 B6 B5 B4 B3 B2 B1 B0 clock ADC8bit
X1 VDD VREFP VREFM Vin B3 B2 B1 B0 clock ADC4bit

*** START ADC Subcircuit ***********************************

*.subckt ADC8bit VDD VREFP VREFM Vin B7 B6 B5 B4 B3 B2 B1 B0 CLOCK
.subckt ADC4bit VDD VREFP VREFM Vin B3 B2 B1 B0 CLOCK

* Set up common mode voltage
BCM VCM 0 V=(V(VREFP)-V(VREFM))/2

* Set up logic switching point
R3 VDD VTRIP 100MEG
R4 VTRIP 0 100MEG

* Ideal input sample and hold
XSH VDD VTRIP VIN OUTSH CLOCK SAMPHOLD

* Level shift by VREFM and 1/2LSB
*BPIP PIPIN 0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^9)
BPIP PIPIN 0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^5)

* 8-bit pipeline ADC
*X7 VDD VTRIP VCM PIPIN B7 VOUT7 ADCBIT
*X6 VDD VTRIP VCM VOUT7 B6 VOUT6 ADCBIT
*X5 VDD VTRIP VCM VOUT6 B5 VOUT5 ADCBIT
*X4 VDD VTRIP VCM VOUT5 B4 VOUT4 ADCBIT
*X3 VDD VTRIP VCM VOUT4 B3 VOUT3 ADCBIT
* 4-bit pipeline ADC
X3 VDD VTRIP VCM PIPIN B3 VOUT3 ADCBIT
X2 VDD VTRIP VCM VOUT3 B2 VOUT2 ADCBIT
X1 VDD VTRIP VCM VOUT2 B1 VOUT1 ADCBIT
X0 VDD VTRIP VCM VOUT1 B0 VOUT0 ADCBIT
.ends

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1 Vinbuf VinS VTRIP CLOCK switmod
Cs1 VinS 0 1e-10
S2 VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW
.ends

* Pipeline stage
.SUBCKT ADCBIT VDD VTRIP VCM VIN BITOUT VOUT
S1 VDD BITOUT VIN VCM switmod
S2 0 BITOUT VCM VIN switmod
Eouth Vinh 0 VIN VCM 2
Eoutl Vinl 0 VIN 0 2
S3 Vinh VOUT BITOUT VTRIP switmod
S4 Vinl VOUT VTRIP BITOUT switmod
.model switmod SW
.ends
*** END ADC Subcircuit *************************************

.end

After looking at the plots in Figures 1, 2, and 3, it can be seen that the ADC behaves just as the 8-bit ADC
did in the original Figure 30.39 except it uses only 4 bits instead of 8.

Figure 1

Figure 2

Figure 3

Problem 30.18 Using the models developed in problems 30.15 and 30.17 with a clock frequency of
100MHz apply an input sinewave having an amplitude of 750 mV peak centered around 750 mV
DC and a frequency of 5MHz to the input of the 4-bit ADC. If the ideal 4-bit DAC is connected to
the digital outputs of the ADC also show the DAC’s analog output.

Solution:

* Problem 30_18 CMOS: Mixed-Signal Circuit Design *

.tran 1n 1000n 0 1n UIC

*WinSPICE command scripts
*#destroy all
*#run
*#let bin3=b3+8
*#let bin2=b2+6
*#let bin1=b1+4
*#let bin0=b0+2
*#plot clock bin0 bin1 bin2 bin3
*#plot Vin Vout

VDD VDD 0 DC 1.5
VREFP VREFP 0 DC 1.5
VREFM VREFM 0 DC 0

Vin Vin 0 DC 0 Sin 0.75 0.75 5MEG
Vclock clock 0 DC 0 Pulse 0 1.5 0 200p 200p 4.8n 10n

Xadc VDD VREFP VREFM Vin B3 B2 B1 B0 clock ADC4bit
Xdac VDD VREFP VREFM Vout B3 B2 B1 B0 DAC4bit

*** START ADC Subcircuit ***********************************

.subckt ADC4bit VDD VREFP VREFM Vin B3 B2 B1 B0 CLOCK

* Set up common mode voltage
BCM VCM 0 V=(V(VREFP)-V(VREFM))/2

* Set up logic switching point
R3 VDD VTRIP 100MEG
R4 VTRIP 0 100MEG

* Ideal input sample and hold
XSH VDD VTRIP VIN OUTSH CLOCK SAMPHOLD

* Level shift by VREFM and 1/2LSB
BPIP PIPIN 0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^5)

* 8-bit pipeline ADC
X3 VDD VTRIP VCM PIPIN B3 VOUT3 ADCBIT
X2 VDD VTRIP VCM VOUT3 B2 VOUT2 ADCBIT
X1 VDD VTRIP VCM VOUT2 B1 VOUT1 ADCBIT
X0 VDD VTRIP VCM VOUT1 B0 VOUT0 ADCBIT
.ends

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1 Vinbuf VinS VTRIP CLOCK switmod
Cs1 VinS 0 1e-10
S2 VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW
.ends

* Pipeline stage
.SUBCKT ADCBIT VDD VTRIP VCM VIN BITOUT VOUT
S1 VDD BITOUT VIN VCM switmod
S2 0 BITOUT VCM VIN switmod
Eouth Vinh 0 VIN VCM 2
Eoutl Vinl 0 VIN 0 2
S3 Vinh VOUT BITOUT VTRIP switmod
S4 Vinl VOUT VTRIP BITOUT switmod
.model switmod SW
.ends
*** END ADC Subcircuit *************************************
*** Start Ideal DAC Subcircuit ******************************

.subckt DAC4bit VDD VREFP VREFM Vout B3 B2 B1 B0

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

*Change input logic signals into logic 0s or 1s
X3 trip B3 B3L Bitlogic
X2 trip B2 B2L Bitlogic
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-
v(vrefm))/16)*(v(B3L)*8+v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm)

.ends

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod
SL 0 BXL trip BX Switmod
.model switmod SW
.ends

*** END DAC Subcircuit *************************************

.end

__

QED

EE515: CMOS Mixed-Signal IC Design

Problem 30.19
Richard Friel
Rich_Friel@AMIS.COM

Problem #30.19 Using Spice, generate the frequency spectrums of the input and output signals in
 Problem 30.18 using Figure 1 as a reference.

Figure 1.

Ideal 4-bit ADC

One implementation of the ideal ADC is shown in Chapter 28, Figure 29.30. The spice
model to be developed, will use an algorithm based on the pipeline ADC. It consists of passing the
output of an ideal Sample and Hold (S/H), through the algorithm to generate the output bits.

In order to make the spice model as useful as possible, we want to complete three steps before
implementing the pipeline algorithm:

1. Level shift the input signal and reference it to 0V,
2. Find the common mode voltage, Vcm, and reference it to 0V,
3. Shift the ADC transfer curves to the left by ½ LSB as shown in Figure 30.37.

The following non-linear dependent source spice statement will accomplish the three steps,

where V(OUTSH) is the output voltage of the ideal S/H [input to pipeline algorithm].

The last term in the spice statement determines ½ LSB for the ADC and is calculated by using
Equation 30.29 in the text.

The spice subcircuit model of the pipeline ADC algorithm is listed in Figure 2, under the heading:

*** START IDEAL 4-BIT ADC Subcircuit***

Analog VDD=1.5V Digital VDD=1.5V Analog

 VIN 4 Bits Vout
 /
 fclk

Ideal
4-bit ADC

Ideal
4-bit DAC

BPIP PIPIN 0 V=V(OUTSH)-V(REFM)+((V(VREFP-V(REFM))/25)

Ideal 4-bit DAC

The output of an Ideal 4-bit DAC can be expressed in the following terms:

Vout = (Vref+ - Vref-) * 1/2N * (bN-12
N-1 + bN-22

N-2 + bN-32
N-3 + b0) + Vref-

This equation can be implemented in a SPICE model using a non-linear dependant source
(a B source). For a 4-bit, Ideal DAC, the SPICE statement would look like:

 *Non-linear dependant source, B, for generating DAC output
Bout Vout 0 V=((v(vrefp)-v(refm))/16)*(v(B3L)*8+v(B2L)*4+v(B1L)*2+v(B0L))+v(vrefm)

The terms BXL correspond to logic signals that have a value of either 1V or 0V.

To implement the VDD/2 switch point, or trip voltage, to create the digital logice levels of 0V or
1V, use the following SPICE statements,

*Generate Logic switching point, or trip voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

Switch implementation is shown in Figure 30.34 and in Figure 2 SPICE code, under the heading,

.subckt Bitlogic trip BX BXL

 To implement the spectral plotting statement in spice use the following Winspice command script:

spec startf stopf stepf vector

The above statement calculates a new vector containing the Fourier transform of the input vector.
This vector should be the output of a transient analysis.

Note that the time axis of the input vector should be linearized first by using the ‘linearize’ ,
because WinSpice3 does not produce a linear time axis for transient analyses. After using the
‘spec’ command, the spectrum can be displayed by plotting the magnitude of the resultant vector.
For example, after a transient analysis resulting in transient vector v(1), the spectrum can be
plotted with the following commands:-

linearize v(1)
spec 10 100000 5000 v(1)
plot mag(v(1))

The spice subcircuit model of the DAC algorithm is listed in Figure 2, under the heading:

*** START IDEAL 4-BIT DAC Subcircuit***

* Figure 2, Input Æ ADC Æ DAC Æ Output,show Input/Output spectrum

.tran .1n 1000n 0 .1n UIC

.save Vout Vin

*WinSPICE command scripts
*#destroy all
*#run
*#linearize Vout Vin
*#spec 0 200MEG 1MEG Vout Vin
*#let voutdb=db(Vout)
*#let vindb=db(Vin)
*#plot voutdb vindb

VDD VDD 0 DC 1.5
VREFP VREFP 0 DC 1.5
VREFM VREFM 0 DC 0
.options reltol=1u

Vin Vin 0 DC 0 Sin 0.75 0.75 5MEG
Vclock clock 0 DC 0 Pulse 0 1.5 0 200p 200p 4.8n 10n

X1 VDD VREFP VREFM Vin B3 B2 B1 B0 clock ADC4bit
X2 VDD VREFP VREFM Vout B3 B2 B1 B0 DAC4bit

*** Start Ideal DAC Subcircuit ******************************

.subckt DAC4bit VDD VREFP VREFM Vout B3 B2 B1 B0

*Generate Logic switching point, or trip, voltage
R1 VDD trip 100MEG
R2 trip 0 100MEG

*Change input logic signals into logic 0s or 1s
X3 trip B3 B3L Bitlogic
X2 trip B2 B2L Bitlogic
X1 trip B1 B1L Bitlogic
X0 trip B0 B0L Bitlogic

*Non-linear dependent source, B, for generating the DAC output
Bout Vout 0 V=((v(vrefp)-v(vrefm))/16)*(v(B3L)*8+v(B2L)*4+v(B1L)
+ *2+v(B0L))+v(vrefm)

.ends

.subckt Bitlogic trip BX BXL
Vone one 0 DC 1
SH one BXL BX trip Switmod
SL 0 BXL trip BX Switmod
.model switmod SW
.ends

*** END DAC Subcircuit *************************************

Figure 2, Continued…..

*** START ADC Subcircuit ***********************************

.subckt ADC4bit VDD VREFP VREFM Vin B3 B2 B1 B0 CLOCK

* Set up common mode voltage
BCM VCM 0 V=(V(VREFP)-V(VREFM))/2

* Set up logic switching point
R3 VDD VTRIP 100MEG
R4 VTRIP 0 100MEG

* Ideal input sample and hold
XSH VDD VTRIP VIN OUTSH CLOCK SAMPHOLD

* Level shift by VREFM and 1/2LSB
BPIP PIPIN 0 V=V(OUTSH)-V(VREFM)+((V(VREFP)-V(VREFM))/2^9)

* 4-bit pipeline ADC
X3 VDD VTRIP VCM PIPIN B3 VOUT3 ADCBIT
X2 VDD VTRIP VCM VOUT3 B2 VOUT2 ADCBIT
X1 VDD VTRIP VCM VOUT2 B1 VOUT1 ADCBIT
X0 VDD VTRIP VCM VOUT1 B0 VOUT0 ADCBIT
.ends

* Ideal Sample and Hold subcircuit
.SUBCKT SAMPHOLD VDD VTRIP Vin Vout CLOCK
Ein Vinbuf 0 Vin Vinbuf 100MEG
S1 Vinbuf VinS VTRIP CLOCK switmod
Cs1 VinS 0 1e-10
S2 VinS Vout1 CLOCK VTRIP switmod
Cout1 Vout1 0 1e-16
Eout Vout 0 Vout1 0 1
.model switmod SW
.ends

* Pipeline stage
.SUBCKT ADCBIT VDD VTRIP VCM VIN BITOUT

VOUT
S1 VDD BITOUT VIN VCM switmod
S2 0 BITOUT VCM VIN switmod
Eouth Vinh 0 VIN VCM 2
Eoutl Vinl 0 VIN 0 2
S3 Vinh VOUT BITOUT VTRIP switmod
S4 Vinl VOUT VTRIP BITOUT switmod
.model switmod SW
.ends

*** END ADC Subcircuit *************************************

.end

The plot in Figure 3, shows the 5MHz input signal to the ADC, Vin, and the resulting DAC
output, Vout, reconstructed waveforms as simulated from the SPICE code in Figure 2. The DAC
output has not been filtered.

Figure 4 shows the spectral densities of the 5MHz input, Vin, and the reconstructed DAC
output, Vout. The noise floor of the input is about –150dB, while the noise floor of the output has
been raised to –50dB.

Figure 3.

Vin folded around Vclock,105MHz

 Vin,5MHz

Noise Floor
Vout

 Noise Floor,
 Vin

Figure 4.

30.20

Does an ideal S/H introduce amplitude quantization noise into an input waveform?
Why or why not?

An ideal S/H does not introduce amplitude quantization noise into an input
waveform. The amplitude of the input into the ideal S/H is exactly the amplitude
out, at the moment of sampling. The quantization noise comes from the difference
between the amplitude of the analog signal and the amplitude of the quantized or
digitized level of the output of the ADC. So quantization noise is added to the
signal after it is sampled during the conversion from an analog to a digital
signal.

EE515: CMOS Mixed-Signal IC Design
Brian Bergeson
Problem 30.21
bbergeso@poci.amis.com

Problem 30.21:

Why are the amplitudes of the mirror images decreasing with an increase in frequency in fig. 30.44b?

Answer:

The reason why the amplitude is decreasing with increasing frequency is because of the sync response filter
attenuation in the output signal of the S/H circuit.

Explanation:

Fig. 30.44b shows the output spectrum of the circuit in fig. 30.43. This circuit calculates the difference
between the input and the output of an ideal S/H. Fig. 30.44b shows the spectrum of the signal that
represents this difference. The output spectrum of an ideal S/H is attenuated as if it was passed through a
sync response filter (see fig 30.29). From page 23 of CMOS: Mixed-Signal Circuit Design: “In other
words, the S/H can be thought of as an ideal impulse sampler followed by a sync response filter.” Since the
input is not attenuated, but the output is, the difference between the two will also show the sync response
attenuation. This attenuation is why the amplitude decreases with increasing frequency.

30.22

VQe,RMS = √ (1/T ∫
 T

0
 (0.5LSB – 1LSB.t/T)2 dt

VQe,RMS = √ (1/T ∫
 T

0 (0.25LSB2 – LSB2.t/T + LSB2.t2/T2) dt

VQe,RMS = √ (1/T (0.25LSB2.t – LSB2.t2/2T + LSB2.t3/3T2)
 T

0

VQe,RMS = √ (1/T (0.25LSB2.T – LSB2.T2/2T + LSB2.T3/3T2)

VQe,RMS = √ (LSB2/4 – LSB2 /2 + LSB2 /3)

VQe,RMS = √ (LSB2/12)

VQe,RMS = VLSB/√12

EE515: CMOS Mixed-Signal IC Design

Problem 30.23
Jim Slupe

30.23 How are voltage spectral density, power spectral density (PSD),
average power, and RMS voltage related for a random signal? What are the
units for each? Provide answers for both continuous signals and signals that
are only defined at discrete frequencies.

Answer:

Discrete signals
RMS voltage is related peak voltage and to power spectral density by
equation 30.33 given here:

VQe,RMS =(1 / sqrt(2))*(sqrt(summation(V2
 FFT*(k ·f RES))))

where the summation is from k=0 to k=M and M = #FFT
points. In this formula which defines RMS quantization noise
voltage for a discrete signal, power spectral density is the term
V2

 FFT. If one were to increase this VQe,RMS value by 3 dB
(multiply by root 2) one would then have the peak voltage or
voltage spectral density.

Continuous signals
The equation 30.33 can be modified to reflect continuous signals by
substituting ((V(f)|f=n*fres) / delta t)2 for the term V2

 FFT (refer to
equation 30.40). The relationships would be the same as those for the
discrete signals given above.

Units
Voltage Spectral Density: Volts divided by the square root of Hertz.
Power Spectral Density: Volts squared divided Hertz.
RMS Voltage: Volts divided by the square root of Hertz.
Average Power: Volts squared or dB.

Brandon Roth
brandonroth@micron.com

30.24 How would we convert voltage spectral density of Fig. 30.48 into a power

spectral density plot? What term in Eq. 30.33 is the PSD? How would we rewrite
Eq. (30.33) to give the average power of the quantization error?

In general power is given by P = V2/R. If we normalize the power we assume a
resistance of one ohm.

 Then P = V2/1.

To convert the voltage spectrum to a power spectrum:

1. Calculate the RMS voltage by dividing by the sqrt of 2 or multiplying
by 0.707.

2. Then square the RMS quantization voltage.

Adding the following lines to winSpice example 30.48 will plot the power
spectral density of the quantization noise.

 *#let vrms = mag(voutd)*0.707
 *#let psd = vrms*vrms
 *#plot psd

Below is the power spectral density plot from the changes above.

Power Spectral Density of Quantization Noise.

In equation 30.33 the V2

FFT term is the PSD. Note again a resistor value of 1 ohm
was assumed.

∑
−

=

×=
1

0

2
,)(

2
1 M

k
resFFTRMSQe fkVV (30.33)

Use equation 30.33 to solve for total average power. The average power for each
spectra is equal to the quantization noise RMS voltage squared. The total average
power is the sum of the average power for each spectra in the spectrum.

)(2
resRMSAVG fkVP ×= for any spectra k.

∑
−

=

×=
1

0

2)(
M

k
resRMSTotalAVG fkVP

2
: FFT

RMS

V
VNote =

Where M is the number of FFT samples and fres is the FFT resolution.

Using equation 30.33....

∑
−

=

×=
1

0

2)(
2

1 M

k
resFFTTotalAVG fkVP

Gexin
Ghuang@uidaho.edu

Problem 30.25:
Repeat Ex. 30.10 if we want to determine the quantization noise power. Show the
simulation results and the commands used to determine this power.

Solution for problem 30.25:

The simulation result is shown below:

From the simulation result, the quantization noise power is 4.242uw.

The command used to generate the quantization noise power is given below:
* For Problem 30.25 *

.tran .2n 2000n 0 .2n UIC

*WinSPICE command scripts
*#destroy all
*#run
*#plot Vin Vout xlimit 900n 1500n ylimit 740m 790m
*#plot Voutd xlimit 900n 1500n ylimit -7m 7m
*#linearize Voutd Vin
*#spec 0 200MEG 0.5MEG Voutd Vin
*#let m=mag(Voutd)
*#let qnoise=0.707*sqrt(mean(m*m)*length(m))
*#let noisepower=qnoise*qnoise
*#plot noisepower

David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 30.26
Question: Derive Eq. (30.43).

Answer: Eq. (30.42) relates the quantization noise power (derived from quantization
noise voltage in Eq. (30.30)) to the sum of the spectral density from DC to the Nyquist
frequency.

� ⋅=
2

0

2
2

)(2
12

sf

Qe
LSB

dffV
V

This equation assumes filtering any alias spectra above the Nyquist frequency. If the
voltage spectrum is assumed to be flat, then V2

Qe(f) is a constant and the equation can be
evaluated.

[]

()

sQe
LSB

sQe
LSB

f
Qe

LSB

ffV
V

ffV
V

ffV
V s

⋅=

−⋅=

⋅⋅=

)(
12

02)(2
12

)(2
12

2
2

2
2

2

0

2
2

s

LSB
Qe

f

V
fV

12
)(

2
2 =

s

LSB
Qe

f

V
fV

12
)(=

In order to continue, a new equation that relates the VLSB to the reference voltages and
number of bits is needed. This is found in Eq. (30.23).

LSBN
REFREF V

VV
LSB =−= −+

2
1

Replacing the VLSB from the evaluated Eq. (30.42) with Eq. (30.23), the final form of
Eq. (30.43) can be written.

s
N

REFREF
Qe

f

VV
fV

122
)(−+ −=

David Goldman
EE 515 – CMOS Mixed-Signal IC Design

Problem 30.27
Question: What term is the PSD in Eqs. (30.42) and (30.44)? What are its units?

Answer: Power Spectral Density (PSD) can be found by squaring voltage spectral
density (Note: this is true because dividing the voltage spectral density by a resistance of
1 Ω is understood and not explicitly written.) The variable for noise voltage spectral
density is VQe(f) and has units of V/√Hz. Thus, PSD in Eqs. (30.42) and (30.44) is written
as V2

Qe(f) and has units of V2/Hz. The position of this term in each equation is identified
below.

� ⋅=
2

0

2
2

)(2
12

sf

Qe
LSB

dffV
V

 PSD

� ⋅=
H

L

f

f

QeRMSQe dffVV)(2 2
,

2

 PSD

1

Gexin
Ghuang@uidaho.edu

Problem 30.28:
Verify, with simulation, Ex. 30.16.

Solution for problem 30.28:

a)The simulation result for sampling frequency 100MHZ is shown below.

From the simulation result, the quantization noise is 1.7115mv.

For the 100MHZ clock signal, use the following statement in the netlist:
Vclock clock 0 DC 0 Pulse 0 1.5 0 200p 200p 4.8n 10n

The simulation result for sampling frequency 100MHZ.

2

b)The simulation result for sampling frequency 200MHZ is shown below.

From the simulation result, the quantization noise is 1.683mv.

For the 200MHZ clock signal, use the following statement in the netlist:
Vclock clock 0 DC 0 Pulse 0 1.5 0 100p 100p 2.4n 5n

The simulation result for sampling frequency 200MHZ.

Brandon Roth
brandonroth@micron.com

30.29 Verify, using simple circuit analysis, that resistors can be used to implement
averaging as seen in Fig. 30.59 and Eq. 30.45.

Referring to the simple circuit below. Each resistor is equal.

Using superposition,

21 AA VV
RR

RVout =
+

=

22 BB VV
RR

RVout =
+

=

Then

2
2221

BA
BA

VVVVVoutVoutVout +=+=+=

If VA = 1V and VB = 3V then Vout = 1.5V, the average of VA and VB.

Simple Circuit to Implement the average of two signals.

Proof using Winspice: Below is a netlist and results for the above example
extending the previous basic example to the average of three inputs.

Chapter 30 problem 29

*** Top Level Netlist ***
VA 1 0 DC 1
VB 2 0 DC 1
VC 3 0 DC 4

DC

DC

V1

V2

Vout

R

R

R1 1 Vout 1000
R2 2 Vout 1000
R3 3 Vout 1000

.tran 1n 5n 0 .01n

.print tran all

*#run
*#plot Vout

Average of VA, VB, and VC.

EE515: CMOS Mixed-Signal IC Design

Problem 30.30
Jim Slupe

30.30 How does averaging K samples of a random voltage variable reduce
its RMS value? How does the power contained in the same variable get
reduced by averaging?

VQe,RMS = (1 / sqrt(K))*(VLSB / sqrt(12)) (30.47)

Answer: The RMS Quantization Noise Voltage is reduced by one over the
root of the averaging factor K in accordance with equation 30.47. The
power would reduce by a factor of one over K (as opposed to the root of K)
since power is in terms of V2

Qe,RMS.

In chapter 30, example 30.16 this RMS Quantization Noise Voltage for the
DAC was seen as VQe,RMS = 1.69 mV (VLSB / sqrt(12) = 5.86 mv / sqrt(12) =
1.69 mV). When subjected to averaging as a result of doubling the
frequency spectrum range (which results in K = 2), the new value of VQe,RMS
as described by equation 30.47 is 1.19 mV.

It can also be seen graphically in figure 30.61 whereby the sample rate is
effectively doubled (K = 2) but the new spectrum is reduced by 3 dB
(20*log (1 / sqrt(2))) compared to the original spectrum.

	Q30.1
	Q30.2
	Q30.3
	Q30.4
	Q30.5
	Q30.6
	Q30.7
	Q30.8
	Q30.9
	Q30.10
	Q30.11
	Q30.12
	Q30.13
	Q30.14
	Q30.15
	Q30.16
	Q30.17
	Q30.18
	Q30.19
	Q30.20
	Q30.21
	Q30.22
	Q30.23
	Q30.24
	Q30.25
	Q30.26
	Q30.27
	Q30.28
	Q30.29
	Q30.30

