Additional end-of-chapter problems for Chapter 30 – Data Converter Modeling
CMOS: Mixed-Signal Circuit Design
Some useful formulas.

Fourier Transform 
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Inverse Fourier Transform: 
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Exponential Fourier series representation of a periodic function with period T (= 1/f ):
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where
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See: http://en.wikipedia.org/wiki/Fourier_series
Dirac delta function, sometimes called the unit impulse response,
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. The discrete version (defined only at discrete time points, that is not continuously) of the Dirac delta function is the Kronecker delta, or simply delta function. See: http://en.wikipedia.org/wiki/Dirac_delta for more information.

Properties of the Dirac delta function: 
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 as the amplitude goes towards ∞ the width of the function moves to 0 keeping the area equal to 1
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Fourier transform of a constant:


[image: image10.wmf])

(

2

f

K

dt

e

K

ft

j

d

p

×

=

×

×

ò

¥

¥

-

-


Fourier transform of a delay (noting a delay of 
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 (magnitude is 1 and the phase shift is 
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Fourier Transform of a sinusoid 
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Noting the magnitude is: 
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 and the phase shift is the tan inverse of the imaginary component over the real component (here the real component is 0) or 90º. Note that using a single-sided spectrum with positive frequencies only we could rewrite the result as
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A series of impulse functions (useful when describing sampling) can be written as (see page 2):
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This function is also called a Dirac comb function, see: 

 http://en.wikipedia.org/wiki/Dirac_comb
The Fourier series representation of this periodic function is written as
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 which is unitless, the impulses gate the sampled signal. 
Rewriting Eq. (30.1) 
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 with units of V
Taking the Fourier transform of this equation we get
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 with units of V/Hz , see Eq. (30.2) 
The peak amplitude of the sampled sinusoids is VP/2.
In a real circuit the sampling impulses have finite amplitude, width, Ws, and rise/fall times, tr/tf. Instead of measuring an amplitude of VP/2 we’ll get an output an amplitude of
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 (see Eq. [30.7] on page 15)
Equation (30.19) derivation:

Writing y(t), the sample-and-held input sinusoid (see Eq. [30.15]) as,
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Note that, as depicted in the above equation, the input is sampled at the instants nTs and then held at the sampled value Vin(nTs), for a pulse period ‘T’.
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or
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where, see Eq. (30.2),
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We can determine the spectrum of h(t), H( f ), see Fig. 30.28, by taking its Fourier transform 
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So, since,
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 see Eq. (30.19)
Note that the factor of two difference between this derivation (and the derivation on the previous page) and the book are because single-sided spectrums are used in the book (so the amplitudes are doubled).

A30.1 
Using the Dirac delta function show the detailed derivation of Eq. (30.2). What are the units when we take the Fourier transform of a voltage signal? What happens to the amplitude of the Fourier transform in Eq. (30.2) when we divide by Ts? What are the units? Using SPICE show how the finite step time of the simulation (the width of the sampling pulses) affects the resulting simulation output spectrum (see Fig. 30.19 and the associated discussion). 
A30.2
Show the detailed derivations of Eqs. (30.17) and (30.19). Using SPICE show the distortion introduced by the S/H can be reduced by returning the S/H output back to zero after each sample. What happens to the signal’s power content using this technique (for reducing distortion) and thus the signal-to-noise ratio? Is this a useful technique? Why or why not?
A30.3
Using the ideal ADC/DAC developed in Ch. 30 show, using SPICE, that signals moving from the input of the ADC to the output of the DAC experience distortion because of the S/H used in the ADC. Compare hand calculated values of amplitude reduction to the SPICE simulation results.
A30.4
Show that coherent sampling can result in quantization noise larger than value calculated using Eqs. (30.30) or (30.32). Explain in your own words what’s going on. Use simulations to support your explanations.

A30.5
Comment on the validity of Fig. 30.57. What is assumed when limiting the quantization noise to the Nyquist frequency? Use simulations to support your comments. 
A30.6
Suppose an 8-bit ADC is used in the schematic seen in Fig. 30.63. Show how the digital averaging filter can be implemented with a transfer function of 
[image: image36.wmf]2

1

1

-

+

z

. How is the factor ½ implemented? Derive the resulting output RMS quatization noise added to the input signal. What are the assumptions used in this derivation? Finally, verify your derivations with SPICE.
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