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35.3) Sketch the implementation of a first-order lowpass filter using a CAI with a 3dB 
frequency of 10Mhz and a DC gain of 6dB. Simulate your design to verify if it 
works as expected. 

 
Soln: 
 
 
 
 
 
 
 
 
 
 
 
Using nodal analysis at the inputs of the op-amp we get the following: 
 
 
 
 
Solving for Vout/Vin we get the following:          Solving for Out/In we get the following: 
 
    
 
 
 
 
From the above equations we can equate G1 and G2: 
 
G1=1/RIC  and G2=RI/RF   
 
f3dB=G1G2/2π 
 
At DC the op-amp can be modeled as such, 
the gain would simply be RF/RI. 

 
6dB=20*log(x) 
   x=2 
 
set RI=1k and RF=2k   
 
We find C by plugging the 3dB frequency (10MHz) into the following equation and 
solving for C: 
 
f3dB=1/RFC2π     C=7.95e-12 ≈ 8pF 
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Simulations are shown below for verification along with the netlist, also shown is the 
phase response of the system. 
 
E515 Homework Ch.35 Problem #3 
 
.control 
destroy all 
run 
let Vout=Voutm - Voutp 
plot db(Voutm-Voutp) 
plot ph(Voutm-Voutp) 
.endc 
 
*ac sweep from 1kHz to 100MHz* 
.ac dec 100 1k 100MEG 
 
VCM VCM 0 DC 0.75 
 
Vin Vinps VCM DC 0 AC 0.5 
Vina Vinms VCM DC 0 AC -0.5 
 
Rftop Voutp Vinm 2k 
Ritop Vinps Vinm 1k 
Rfbot Voutm Vinp 2k 
Ribot Vinms Vinp 1k 
 
Cfp Voutp Vinm 8pF 
Cfm Voutm Vinp 8pF 
 
E1 Voutp VCM Vinp Vinm 100MEG 
E2 VCM Voutm Vinp Vinm 100MEG 
 
.end 
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35.4) Plot, in the complex plane, the ideal pole location and the actual pole locations 
due to finite op-amp unity-gain frequency for the filter described in Ex. 35.4 

 
Soln: 
 
For the filter in Ex. 35.4 fu=10MHz with C=259n and Rf=1k.  We can use Eq.(35.17) 
from the book to find the 2 poles due to the finite op-amp unity gain. 
 
 
 
                                                                                                          
 
where ωu=2πfu                                                        with ωu=∞   
 
sp1=--9.99e6 and  sp2=--6293.27                                     sp1=∞ and  sp2=-6289.31              
   
A sketch of the effect of the unity-gain frequency on the position of the poles is shown 
below: 
 
                   
 
                     
 
 
 
 
                                                                                                 Note:  the other pole is at ∞ 
 
 
 
 



Problem 35.5 solution        Jake Anderson 
           janderson@boisestate.edu 
 
Regenerate Figure 34.21 of the last chapter using SPICE and the op-amp model shown in Figure 35.8 
 
The netlist for Figure 35.8 is shown below: 
Note that the Circuit still works with out the feedback resistors, but is to more realistic to have them in. 
*Netlist for Problem 35.5 
* Netlist for Figure 35.8 pg 401 which is a SPICE model 
* for a differential input/output op-amp with finite bandwidth 
* that is set by the RC filter 
 
*following are commands for the AC analysis and plots 
* Note: Fig. 35.9.cir was a good example for learning 
*      the correct commands for the AC analysis. It  
*      also has in it a more compact netlist of the 
*      same circuit. 
.control 
destroy all 
run 
set units=degrees 
* -Here Vout = Vout+ - Vout- = plsVout - mnsVout 
plot ph(mnsVout-plsVout) 
plot db(mnsVout-plsVout) 
.endc 
 
.ac dec 100 1 100Meg 
 
*Set Vin to 1V (Vin+ - Vin- = 1V) 
Vin ViPls VCM DC 0 AC 0.5 
Vina ViMns VCM DC 0 AC -0.5 
 
*Feedback Resistors 
Rftop plsVout ViMns 1e9 
Rfbtm mnsVout ViPls 1e9 
*VCVS for the op-amp input stage 
E1 VoPls VCM ViPls ViMns 10000 
E2 VCM VoMns ViPls ViMns 10000 
 
*RC filter stage 
XPls VoPls VbufferInPls 0 RCfilter 
XMns VoMns VbufferInMns 0 RCfilter 
 
*Buffer Stage 
XPlsBuffer VbufferInPls plsVout Buffer 
XMnsBuffer VbufferInMns mnsVout Buffer 
*Power Supplies 
VCM VCM 0 DC 1.5v AC 0 0 
 
 
*RC Filter subckt for RC/2pi = 1KHZ 
.SUBCKT RCfilter in out btm 
R1 in out 1K 
C1 out btm 159e-9 
.ENDS RCfilter 
 
*Buffer subckt using VCVS 
.SUBCKT Buffer in out 
Ebuffer out 0 in 0 1 
.ENDS Buffer 
 
 

The plots for the above ckt are on the next page. Notice that there is not a 40db/Decade fall off 
because this model of an op-amp doesn’t have any circuit components to cause it in simulation. It is 
still a ‘fake’ op-amp, but it does model Aol, f3db, fu, and proper Phase Margine for the useful range of 
operation of the op-amp. 



Problem 35.5 continued 

Aol = 86dB = 19952

f3db = 1KHz fu ~ 20MHz =
Aol*f3db

Phase margine
=90deg here

 
 



Solution: 35.6 
 
Anti alising filter should not limit the SNR of data converter, so SNR of anti alising filter should be 
greater than SNR of data converter.  Beside filter, data converter  has other noise sources,  due to non-
idealities of  components used.   
 
SNR of data converter = 6.02N +1.76 dB 
(where quantization noise = VLSB/ 12 ) 
 
if noise performance is dominated by thermal noise, in this case: 

SNR of anti alising filter =  
CKT

Vdd
/

22/10log20  

where,  T=temperature  
and K=Boltzman’s Constant =1.38*10-23   J/K 

 
   SNR (filter) > SNR (data converter) 
 
   Choosing T=298K 
 

 20log10(8.27*109√C) > 6.02*12+1.76 dB 
 C>367.3 fF 

 
Minimum value of integration capacitor should be much higher than 367.3fF. 
 
 
 

 
 



Solution for 35.7  by Sugato Mukherjee  e-mail:msugato@ieee.org 
 
Q: Repeat problem 35.6 if the op-amp used in the filter has a linear output swing of 80% 
of the power supply voltage. 
Ans:  Assuming that the noise performance of the filter is dominated by thermal noise, 
the filter SNR is given by  

C
kT

Vdd

filterSNR 22
8.0

log20)( 10

×
=  (from equation 35.23) 

where  C=value of integration capacitor  
           Vdd=1.5V 
 k=Boltzman’s constant= 1.38X10-23 J/K 
 T=temperature =298K 
Putting these values in the above equation, we get 

 )10616.6(log20)( 9
10 CfilterSNR ××=  

Now the SNR for a 12 bit data converter considering ideal behavior is given by 
SNR(ADC-12bit)=6.02X12 +1.76 (using equation 28.27 and assuming that the 

quantization noise is given by 
12
LSBV

i.e no oversampling) 

SNR(ADC-12 bit)=74dB 
Now, )()( ADCSNRfilterSNR ≥  

74)10616.6(log20 9
10 ≥××∴ C  

which gives fFC 9.573≥  
Since we do not want the anti-aliasing filter SNR to limit the SNR of our data 
converter(which has other non-idealities associated with it), practical choice of C must be 
much higher than the minimum value of 573.9fF. 
 



Solution by: 
Curtis Cahoon 
curtis_cahoon@ieee.org 
 
Problem 35.8 
 
Show using the topology shown in Fig. 33.22 (and the same SPICE models), how using 
the two MOSFETs linearizes the change in resistance with VDS. 
 
Solution: 
 
First of all, refer to the topology in Fig. 33.22.  For this simulation, I tied the sources of 
both MOSFETs to Vcm=0.75V.  I then swept the drain voltage of the first MOSFET 
from 0 to 1.5 volts.  I attached a VCVS (Eda) to the other MOSFET, and set the gain such 
that the drain of the second MOSFET was swept from 1.5 down to 0 volts.  The netlist for 
this simulation is shown below.  
 
M1  Vd1  Vg VCM 0 nmos W=5 L=100 
M1a Vd1a Vg VCM 0 nmos W=5 L=100 
  
Vg   Vg   0   DC 2  
Vd   Vd   0   DC 1.5 
VCM  VCM  0   DC 0.75  
Vd1  Vd   Vd1 DC 0 
Vd1a Vd1a Vda DC 1.5  
Eda  Vda 0 0 Vd 1 
 
.DC Vd 0.5 1 0.01 
 
.control 
destroy all 
run 
let RDS1=1/deriv(Vd1#branch+Vd1a#branch) 
let RDS11=1/deriv(vd1#branch) 
plot RDS1 RDS11 
plot Vd1a#branch+vd1#branch 
.endc 
 
Notice that the voltage across the first MOSFET is being swept from –0.75V to 0.75 
volts, while the voltage across the second MOSFET is being swept from 0.75 to –0.75 
volts.  For this simulation, notice that I set the gate voltage to 2 volts for this simulation, 
which could be increased to increase the linearity of the current through the set of 
MOSFETs.  I picked this value because it was large enough to keep the MOSFETs 
always operating in the triode region.  For a discussion of why this topology is used, see 
the discussion on MOSFET-C integrators in the textbook. 

mailto:curtis_cahoon@ieee.org


When I ran this simulation, I summed the currents through the two MOSFETs and the 
result is plotted below. 
 

 
 
(Note: The voltage at the bottom for 0-1.5V corresponds to VDS= -0.75 to 0.75V.) 
 
This graph shows that over this range of VGS, the current change is almost exactly linear.  
This equivalent resistance is the reciprocal of the derivative of the current through the 
MOSFETs.  Since the current through the MOSFETs is essentially linear, this means that 
the resistance of the MOSFETs will be essentially constant, with a value of 1/(slope of  
IV graph above).  I plotted the equivalent resistance of the single MOSFET together with 
the resistance of the MOSFET pair on the graph below to compare the two. 
 

 
Over the range from 500mV to 1V, the resistance is essentially constant at 55kohms, 
which is what we want in order to minimize distortion.  
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Problem 35.9 
 
        Repeat Ex. 35.4 using a MOSFET-C filter. Use the MOSEFET SPICE model given in Ch. 
33. After performing the AC simulations, try a transient simulation with an input sinusoid at 
1MHz. Show how the output of the filter becomes distorted as the amplitude of the input signal 
increases. Determine the filters SNDR when the input signal has a frequency of 1MHz and an 
amplitude of VDD peak to peak. 
 
 
 
 
        As in Ex. 35.4, the op-amp’s DC gain is set to 10,000, fu set to 10 MHz and F3dB is 
1kHz. The circuit shown below is the Spice model used to simulate an op-amp with finite 
fu.   
 
 
 
 
 

 
 
 
 
         Fig1.  SPICE modeling of a differential op-amp with finite bandwidth. 
 
 
 
      The MOSFET-C integrator is used here. Four long length transistors operated in the 
triode region replace the RI and RF of the active-RC filter. EKV device model is selected 
for those NMOS transistors. The minimum length is 0.15u for the process the model 
represented. 
 



        

 
 
 
               Fig2.  A MOSFET-C filter. 
 
 
 
AC SPICE Simulation 
 
         Fig.3 shows the magnitude and phase responses of the above MOSFET-C filter 
from the AC simulation. The f3dB is slightly over 1 MHz with Vtune = 0.6V. The f3dB of 
the filter could be easily adjusted by tuning the Vtune upwards or downwards.  The 
magnitude response also shows that at 10 MHz, the response transitions to 40 dB/decade 
from the initial 20 dB/decade due to the effect of op-amp’s closed-loop pole at this 
frequency. 
 

 
 



 
 
 

 
 
          Fig3. The magnitude and phrase responses of the MOSFET-C filter. 
 
 
Transient SPICE Simulation 
 
        Fig.4 shows transient simulation results of a 0.5V and a 1V sinewaves applied to the 
filter at 1 MHz. The output of the filter is starting to decrease as 1 MHz is approaching 
the 3 dB frequency of the filter. The output of the filter also becomes distorted as the 
amplitude of the input signal increases (from 0.5V to 1V). 
 

 
 
 
 



 
 
 

 
 
 
 
            Fig4. The transient simulation results of the MOSFET-C filter. 
 
 
 
 
 
Determine the filter’s SNDR 
 
       The signal-to-noise plus distortion ratio is defined as  
 

RMSDQe

p

V
V

SNDR
,

2/
log20

+

=  

 
 

       Where VQe,RMS  is the RMS quantization noise voltage from an output spectrum. To 
calculate this value, we sum the mean-squared contribution from each component (after 
removing the input tone from the spectrum) and then take the square root of the results. 
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       The spec command (spectral analysis command) in SPICE is used to take the DFT 
(discrete Fourier Transform) of Vout over a frequency rang (from 0 to 5 MHz in this 



simulation).  The voltage spectrum for the output of the filter is shown in Fig 5. The 
SNDR from the SPICE simulation is  3.1727e+2 dB  which is small because of the 
nonlinear property of the MOFET resistors. The major benefit of the MOSFET-C filter 
over the active–RC filter is its ability to tune. 
 
 
 
 
 
 
 

 
 
 
 
 
            Fig5. The output noise spectrum of the MOSFET-C filter. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
SPICE Simulation Netlist for AC and Transient Simulation 
 
.control 
destroy all   
run 
set units=degrees 
*plot ph(Voutm-Voutp) 
*plot db(Voutm-Voutp) ylimit 0 -40 
plot  vinps vinms voutp voutm 
*let vout=voutp-voutm 
*plot vout  
.endc 
 
*.ac dec 100 1k 100MEG 
.tran .01u 2u UIC 
 
.options reltol=0.1 vntol=1m abstol=1u 
 
*VCM VCM 0 DC 0.75 
VCM VCM 0 DC 0 
Vtune Vtune 0 DC 0.6 
vbb vbb 0 DC -0.5 
 
*Set Vin to 1V (Vin+ - Vin- = 1V) 
Vin     Vinps   VCM  DC  0   AC  0.5       SIN 0  0.5  1000k 
Vina    Vinms   VCM     DC  0   AC  -0.5     SIN 0  -0.5 1000k 
 
Mftop Voutp Vtune  Vinm  vbb   NMOS  L=5u W=10u 
Mitop Vinps Vtune  Vinm  vbb   NMOS  L=5u W=10u 
Mibot Vinms Vtune  Vinp  vbb   NMOS  L=5u W=10u 
Mfbot Voutm Vtune  Vinp  vbb   NMOS  L=5u W=10u 
 
Cfp Voutp Vinm   5p 
Cfm Voutm Vinp   5p 
 
*Use a VCVS for the op-amp 
E1 Voutpp VCM Vinp Vinm 10k 
E2 VCM Voutmm Vinp Vinm 10k 
E3 Voutp 0 Voutppc 0 1 
E4 Voutm 0 Voutmmc 0 1 
Rpp Voutpp Voutppc 1k 
Rmm Voutmm Voutmmc 1k 
Cpp Voutppc 0 159n 
Cmm Voutmmc 0 159n 
 
 
.MODEL nmos nmos 
. 
. 
. 
.end 
 



 
SPICE Simulation Netlist for Determining the filter’s SNDR 
 
.control 
destroy all   
run 
set units=degrees 
* Here Vout = Vout+ - Vout- = Voutm - Voutp 
 
*plot ph(Voutm-Voutp) 
*plot db(Voutm-Voutp) ylimit 0 -40 
*plot  vinps vinms voutp voutm 
let vout=voutp-voutm 
*plot vout  
linearize vout  
spec 0 5MEG 10k  vout  
let m=mag(vout) 
plot db(m) 
 
let m[0]=0 
let m[100]=0 
  
let noise=0.707*sqrt(mean(m*m)*length(m)) 
let sndr=db(0.5*1.414/noise) 
print noise 
print sndr  
print length(m) 
.endc 
 
*.ac dec 100 1k 100MEG 
.tran .1u .1m UIC 
 
.options reltol=0.1 vntol=1m abstol=1u 
 
*VCM VCM 0 DC 0.75 
VCM VCM 0 DC 0 
Vtune Vtune 0 DC 0.25 
vbb vbb 0 DC -0.5 
 
*Set Vin to 1V (Vin+ - Vin- = 1V) 
Vin     Vinps   VCM  DC  0   AC  0  0     SIN 0  0.5  1000k 
Vina    Vinms   VCM     DC  0   AC  0  0     SIN 0  -0.5 1000k 
 
*Rftop Voutp Vinm 10k 
*Ritop Vinps Vinm 10k        
*Rfbot Voutm Vinp 10k 
Mftop Voutp Vtune  Vinm  vbb   NMOS  L=5u W=10u 
Mitop Vinps Vtune  Vinm  vbb   NMOS  L=5u W=10u 
Mibot Vinms Vtune  Vinp  vbb   NMOS  L=5u W=10u 
Mfbot Voutm Vtune  Vinp  vbb   NMOS  L=5u W=10u 
 
Cfp Voutp Vinm   5p 
Cfm Voutm Vinp  5p 
 
 
*Use a VCVS for the op-amp 



E1 Voutpp VCM Vinp Vinm 10k 
E2 VCM Voutmm Vinp Vinm 10k 
E3 Voutp 0 Voutppc 0 1 
E4 Voutm 0 Voutmmc 0 1 
Rpp Voutpp Voutppc 1k 
Rmm Voutmm Voutmmc 1k 
Cpp Voutppc 0 159n 
Cmm Voutmmc 0 159n 
 
 
.MODEL nmos nmos 
. 
. 
. 
.end 
 
 
 
 
 
 
 
 
 
EKV device model used in the simulation 
 
 
.MODEL nmos nmos 
+ LEVEL=44 
*** Setup Parameters 
+ UPDATE=2.6 
*** Process Related Model Parameters 
+ COX=9.083E-3 XJ=0.15E-6 
*** Intrinsic Model Parameters 
+ VTO=0.4 GAMMA=0.71 PHI=0.97 KP=453E-6 
+ E0=88.0E6 UCRIT=4.0E6  
+ DL=-0.05E-6 DW=-0.02E-6 
+ LAMBDA = 0.30 LETA=0.28 WETA=0 
+ Q0=280E-6 LK=0.5E-6 
*** Substrate Current Parameters 
+ IBN=1.0 IBA=200E6 IBB=350E6 
*** Intrinsic Model Temperature Parameters 
+ TNOM=27.0 TCV=1.5E-3 BEX=-1.5 UCEX=1.7 IBBT=0 
*** 1/f Noise Model Parameters 
+ KF=1E-27 AF=1 
*** Series Resistance and Area Calulation Parameters 
+ HDIF=0.24e-6 ACM=3 RSH=5.0 RS=1250.526 
+ RD=1250.526 LDIF=0.07e-6 
*** Junction Current Parameters 
+ JS=1.0E-6 JSW=5.0E-11 XTI=0 N=1.5 
*** Junction Capacitances Parameters 
+ CJ=1.0E-3 CJSW=2.0E-10 CJGATE=5.0E-10 
+ MJ=0.5 MJSW=0.3 PB=0.9 PBSW=0.9 FC=0.5 
*** Gate Overlap Capacitances 
+ CGSO=3.0E-10 CGDO=3.0E-10 CGBO=3.0E-11 
.end 



EE515  -CMOS Mixed Signal IC Design   -- Yantao Ma 
        -- yantaoma@rocketmail.com 
 
Chapter 35.10 Derive the transfer function for the filter shown in fig35.16 if the 
transconductanctors have different gm. Sketch the block diagram, similar to the one seen in fig 
35.6, for the filter? 
 
[Answer]:   If the transconductors have different gm, like gm1 and gm2 as shown in the 

following figure, we can sum the output current of 1st transconductor with that from 2nd 
one to generate the net output current through capacitor C. 

gm1 (Vin+ - Vin-)  - gm2 (Vout+ - Vout-) = jωC (Vout+ - Vout-) 
 

or transfer function as following: 
 
Vout+ - Vout-        =           gm1           .        =          gm1/gm2    =             1/G2      . 
 Vin+ - Vin-     gm2 + jωC  1 + jωC/gm2  1 + s/ G1G2 
 
Where, G1 = gm1 /C = 1/(C/gm1),    G2 = gm2 / gm1 = (1/gm1)/(1/gm2),   f3dB = G1G2 / (2π) 
 
 
 

+  gm1  + 
-           - 

+  gm2  + 
-           - 

Vin+ 
Vin- 

Vout- 
Vout+ 

C 

Figure 35.16 Implementing a first-order filter using transconductors 
 

 
 
The block diagram, similar to the one seen in fig 35.6, for the filter is shown as following 
 

Vin(f) Vout(f) 

Figure 2. Block diagram for the first-order filter using transconductors 

G1/s =gm1/sC 

 G2 = gm2 / gm1 

+      - 

 
 



EE515  -CMOS Mixed Signal IC Design   -- Yantao Ma 
        -- yantaoma@rocketmail.com 
 
 
Chapter 35.11 

Derive the transfer function for the following first-order transconductor filter. 
 
[Answer]:  Assume all these three transconductors have different gm’s, defined as gm1 gm2 and 

gm3 as shown in the figure below: 
 

+  gm1  + 
-           - 

+  gm2  + 
-           - 

Vin1+ 
Vin1- 

Vout- 
Vout+ C 

Figure 35.74  A first-order filter with two input transconductors 

+  gm3  + 
-           - 

Vin2+ 
Vin2- 

A 

B 

 
 

Define: Vin1 = Vin1+ - Vin1-   Vin2 = Vin2+ - Vin2-  Vout = Vout+ - Vout- 
 
As we know, the output of a single transcondutor is defined as gm (Vin+ -Vin-).  
By deploying Kirchhoff’s Current Law (KCL) at either node A or B, we can easily 
obtain: 
 
gm1 (Vin1+ - Vin1-)  + gm2 (Vin2+ - Vin2-) - gm3 (Vout+ - Vout-) = jωC (Vout+ - Vout-)  
 
Therefore, the Transfer equation for a first-order two-input filter can be stated as: 

Vout (gm3 + jωC)  =  gm1 Vin1  + gm2Vin2   
 
Transfer function can be further simplified as following if Vin1 = Vin2 = Vin: 
 

Vout       =           gm1 +   gm2      =       gm1/ gm3 + gm2/ gm3   
  Vin      gm3 + jωC   1  + jωC/gm3     





















Solution for 35.14  by Sugato Mukherjee  e-mail:msugato@ieee.org 
 
Q. Show that if the values of A and B are restricted to 1,0.5,0.25,0.125 etc that the circuit 
of Figure 35.75 can be used to implement multiplication by coefficients that aren’t 
directly powers of two. How would a multiply by 0.75 be implemented? A multiply by 
0.9375? A multiply by 0.5625? 
Ans.  If the values of A and B are restricted to 1,0.5,0.25,0.125 etc, multiplication by A 
and B can be simply implemented with a shifter. Eg. a multiply by 0.25  is achieved by 
two right shifts of  the digital word. If we incorporate another adder block in the system, 
then we can achieve multiplication by values that are not powers of two with minimal 
hardware complexity. The hardware requirements are simply shift registers and adders.  
Let us now mathematically examine how this is possible.  
    Looking at Figure 35.75, we see that Out = (A-B) In 

Then if we choose A=1 (no shift) and B=0.25 (two right shifts), then Out = 0.75 
In. Thus we have achieved a multiplication by 0.75.  

For multiplying by 0.9375 we observe that 0.9375 = 1 - 0.0625.  
Now 0.0625 = (2)-4 So setting A=1(no shift) and B=0.0625(4 right shifts) achieves 
multiplication by 0.9375.  
 For multiplying with 0.5625, we observe that 0.5625 = (0.75)2. So we can cascade 
two multipliers each with a multiplying factor of 0.75 to achieve the desired result. Also 
realizing that binary subtraction is addition of 2’s complement numbers, we see that the 
block diagram of Figure 35.75 need not be restricted to subtractions only. Subtraction can 
be converted to addition by setting the carry bit of the first (least significant) stage = 0 
(instead of 1 needed to convert a number to 2’s complement for subtraction purpose) and 
not logically inverting the B input to the adder (inversion needed to convert the digital 
representation of B into 2’s complement for subtracting purpose). All we have added to 
the circuit hardware are some two-input multiplexers which are controlled by a signal 
which decides whether we add B to A or subtract B from A. So if we have Out=(A+B)In 
then we can say that 0.5625= 0.5+0.0625=(2)-1 + (2)-4. So choosing A=0.5 and B=0.0625 
achieves multiplication by 0.5625. 
 



Solution: 35.15: 
 

• Multiply by 0.8789 
 
From figure 37.75 (of problem 35.14) Given A and B are restricted to 0.5, 0.25, 0.125 …. 
(Implemented with shift registers) 
 
Choosing A=1 and B=0.0625 
A-B=0.9375 
And (A-B)2=0.8789 
So by cascading two multipliers we could get multiplication by 0.8789 
 

 
  In  
 
 
 
 
 
 

 
• Multiply by 0.3164 
If A=1, and B=0.25 
A-B=0.75 
And (A-B)4=0.3164 
 

 
  In  
 
 
 
 
 
 

 
  I 
 
 
 
 
 
 

0.0625 0.0625

11

++

0.25 0.25

11

++

0.25 0.25

11

++



Problem 35.16 
Jake Anderson 

janderson@boisestate.edu 
 

Show the details of how the gains, G’s, are derived in Fig. 35.30 
 

 
Figure 35.30 

It is easier to derive the gains using a single-ended topology shown below. 

 
Figure1 
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The Vout in Figure 1 is actually –Vout. 
The input current and the feedback current are equal so that 
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This equation can be compared to equation 35.52, and the gains are calculated below. 
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35.17) In Fig. 35.35 a filter section has a transfer function that can be written 
  

 
 

For this transfer function generate a z-plane plot and a magnitude plot similar to 
what is seen in Fig. 35.27. 

 
Soln: 
 
pole=>   0 

zero=>   0]
1

[)1( =
+

−∗+
A

AzA  

 
     
                                            
 
 
Z-plane and magnitude plot are shown below: 
                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Magnitude of |H(f)| was found by taking the distance from the starting point on the unit 
circle (at DC, f=0) of the zero divided by the distance from the starting point of the pole: 
 
 
                 
 
 
 
 
We can also solve this problem by transforming z in the transfer function and then taking 
the magnitude and solving for the values shown in the above magnitude graph: 
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Grouping the real terms together and taking the magnitude we get the following: 
 
 
 
 
 
Plugging in for f  with A=.1 we get the following with for the magnitude: 
 
f=fs/2     1.2 
f=fs        1 
f=3fs/2  1.2 
 
A simulation with WINSPICE verifies the solution. 
 
*Homework Problem Ch.35 #17 * 
 
.AC LIN 1000 1k 200MEG 
 
*WinSPICE command scripts 
.control 
destroy all   
run  
plot mag(Vout) 
.endc 
 
Vin     Vin    0  DC 0  AC 1 
Vina Vina 0 DC 0 AC 0.090909 
R1 vin 0 1k 
R2 Vina 0 1 
 
*Delays using transmission lines and terminations 
TZ1 Voutd 0 Vina 0 TD=10n ZO=50 
RZ1 Voutd 0 50 
 
Esum Vout 0 Vin Voutd 1.1 
R3 Vout 0 1k 
 
.end 
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35.18) Plot the time-domain output of the filter in Fig. 35.37 when the input is a zero to 
one step function. 

 
Soln: 
 
To model the circuit in WINSPICE we use voltage-controlled voltage sources for the 
adders and the multipliers.  The z-1 blocks are modeled as transmission lines with a time 
delay. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can write the transfer function as: 
 
The spice simulation is shown below to verify operation: 
 

*Homework Problem Ch.35 #18* 
 
.AC LIN 1000 1k 200MEG 
 
*WinSPICE command scripts 
.control 
destroy all   
run  
plot mag(Vout) 
.endc 
 
Vin     Vin    0  DC 0 AC 1  
 
Eadd1 Vint 0 Vin Vf1 1 
Eadd2 Vout 0 Vin1 Vtd2 1 
 
*Multipliers 
E1 Vf1 0 Vout1 0 -.8 
E2 Vin1 0 Vout2 0 1.1 
 
*Delays using transmission lines and terminations 
TZ1 Vout1 0 Vint 0 TD=10n ZO=50 
RZ1 Vout1 0 50 
TZ2 Vtd2 0 Vout2 0 TD=10n ZO=50 
RZ2 Vtd2 0 50 
 
*Buffer to ensure no loading between the two delays 
Ebuf Vout2 0 Vout1 0 1 
 
.end 
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The problem asked for a step input from 0 to 1, we can change the input in the netlist and 
do a .tran simulation: 
 
*Homework Problem Ch.35 #18* 
 
.tran 1n 3u 1n 
 
*WinSPICE command scripts 
.control 
destroy all   
run  
plot mag(Vout) 
.endc 
 
Vin     Vin    0  pulse(0 1 1u 2n 2n 2u 4u)  
 
Eadd1 Vint 0 Vin Vf1 1 
Eadd2 Vout 0 Vin1 Vtd2 1 
 
*Multipliers 
E1 Vf1 0 Vout1 0 -.8 
E2 Vin1 0 Vout2 0 1.1 
 
*Delays using transmission lines and terminations 
TZ1 Vout1 0 Vint 0 TD=10n ZO=50 
RZ1 Vout1 0 50 
TZ2 Vtd2 0 Vout2 0 TD=10n ZO=50 
RZ2 Vtd2 0 50 
 
*Buffer to ensure no loading between the two delays 
Ebuf Vout2 0 Vout1 0 1 
 
.end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note at steady state, (1.5u) we get half the input voltage, this agrees with the transfer 
function if we set f=0 then z=1 and we get .1/.2=.5 
 



Problem 35.19 
Jake Anderson 

janderson@boisestate.edu 
 
Design a first-order canonic digital filter that is clocked at 100MHz and has a transfer 
function in the frequency domain given by, 
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Begin by calculating A1 from Figure 35.39 
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Now calculating Bo+B1 

25133.0
1 1

1

1 =+>−−
−
+

= BB
A
BBA o

o
DC  

 
Like in example 35.10, we will put the zero at infinity so it doesn’t efect the transfer 
function. 
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The sketch of the filter is shown below 
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Note that this is the exact same filter as the one seen in Fig 35.26 except we have 
combined multipliers so B1=A, the A of Fig 35.26. 
Using the same netlist for Fig35-28 alt.cir, accept the 0.1 in the netlist is changed to 
0.25133 gives the simulation for this filter. The Frequency response is shown on the next 
page. f3db is four Mega Hertz. 



 
Below is a zoom in, to see more easily the  f3db is at 4MHz 

 



Solution 35:20. 
Digital filter of fig. 35.42 using only two input adders: 
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 Solution for 35.21  by Sugato Mukherjee  e-mail:msugato@ieee.org 
 
Q.  Is it possible to tune the gain, Q, and cut-off frequency of the lowpass biquad 
independently? If so how? Give examples using the simulation netlist used to generate 
Fig. 35.48. 
Ans:  It is possible to tune the gain, Q, and cut-off frequency of the lowpass biquad 
independently. This can be shown by examining the design equations for the active RC 
implementation of the lowpass biquad. The general form  (s-domain) of the second order 
lowpass filter is given by 
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Looking at equations 35.89 to 35.93, we find that a2=a1=0 => G3=G6=0. Let us now find 
the expression for  Q using equations 35.92 and 35.93.  Substituting the value for f0 from 
35.93 in 35.92, we get 
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5410 GGG=ω  (ω0=2πf0) 
Gain = G1G4 
Also for the active RC implementation, putting the values for G1 to G6, we get 
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From (1), (2) and (3), we see that for a given cut-off frequency, we can adjust Q by 
changing RF1 and adjust the gain by changing RI1.  
To illustrate this point we will use the netlist used to generate Fig. 35.48. The cut-off 
frequency for this example was 1.59MHz , Q=0.707, Gain=1. Let us proceed to show that 
we can change the Q of this filter keeping the gain and cut-off frequency constant and 
then change the gain of the filter keeping the Q and the cut-off frequency constant. The 
netlist used to generate Fig. 35.48 is reproduced next for convenience.  In this netlist if 
we change RF1 from 7.07K to 50K, then Q becomes 5 instead of 0.707 and the magnitude 
response of the filter should now exhibit a peaking behavior but the DC gain and the cut-
off frequency should remain unchanged. Also, next if we change the value of RI1 from 
10K to 1K, we should get a DC gain of 10 instead of 1 with the same Q (=0.707) and cut-
off frequency as the original filter. The simulation waveforms are shown to validate the 
above observations. 
 
 
 



*Figure 35.48 CMOS: Mixed-Signal Circuit Design * 
 
*WinSPICE command scripts 
*#destroy all   
*#run 
*#set units=degrees 
*#plot ph(Voutp-Voutm)   
*#plot db(Voutp-Voutm) 
 
.ac dec 100 1k 100MEG 
 
VCM VCM 0 DC 0.75 
 
*Set Vin to 1V (Vin+ - Vin- = 1V) 
Vin     Vinps   VCM  DC  0   AC 0.5 
Vina    Vinms   VCM     DC  0   AC -0.5 
 
Rftop1 Voutm1  Vinm1 7.07k 
Ritop1 Vinps   Vinm1 10k 
Ribot1 Vinms   Vinp1 10k 
Rfbot1 Voutp1  Vinp1 7.07k 
 
Cftop1 Voutm1  Vinm1 10p 
Cfbot1 Voutp1  Vinp1 10p 
 
*Use a VCVS for the op-amp 
E11 Voutm1 VCM Vinp1 Vinm1 100MEG 
E21 VCM Voutp1 Vinp1 Vinm1 100MEG 
 
Rf2top Voutm  Vinm1 10k 
Ri2top Voutm1 Vinm2 10k 
Ri2bot Voutp1 Vinp2 10k 
Rf2bot Voutp  Vinp1 10k 
 
Cfp2 Voutp Vinm2 10p 
Cfm2 Voutm Vinp2 10p 
 
*Use a VCVS for the op-amp 
E12 Voutp VCM Vinp2 Vinm2 100MEG 
E22 VCM Voutm Vinp2 Vinm2 100MEG 
 
.end 
 
 
 
 



 
DC gain =1, cut-off frequency =1.59 MHz, Q=5. The above figure can be compared 
against Fig. 35.48 in the book to verify that Q can be tuned independently for a given 
gain and cut-off frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
DC gain =10, cut-off frequency =1.59 MHz, Q=0.707. The above figure can be compared 
against Fig. 35.48 in the book to verify that the gain can be tuned independently for a 
given Q and cut-off frequency. 
 
   This is known as orthogonal tuning. Orthogonal tunability increases the flexibility of a  
design by providing more degrees of freedom for adjusting system parameters.  



Solution by: 
Curtis Cahoon 
curtis_cahoon@ieee.org 
 
Problem 35.22 
What happens to the poles in the biquadratic equation, Eq. (35.80), if the Q is less than 
0.5?  Is the fmax equation in Fig. 34.45 valid? 
 
Solution 
 
First of all, we recognize that the poles in a biquadratic transfer function occur where the 
equation in the denominator is equal to zero.  The equation for the denominator in the 
standard biquadratic transfer function is shown below. 
 
P(f) = s2 + (2πf0/Q)s + (2πf0) 2  
 
If the Q of the filter is set equal to 0.5, the equation can be rewritten in the following way 
(since 1/0.5 = 2) 
 
P(f) = s2 + 2(2πf0)s + (2πf0) 2  
 
Which is simply (s + 2πf0) 2, which means that the filter will have a double pole at  
s = -2πf0.  If we remember the discriminant of a quadratic function (b2 – 4ac) we see that 
this corresponds to the case where b2 – 4ac = 0.  This results in a repeated real value for 
the roots of our equation.  Since the filter has only real poles at this point, this transfer 
function that can be realized by a cascade of two first-order filters (see section 35.2.2 in 
the chapter).   
Now let’s see what will happen if we have a lower Q value.  Having a lower value for Q 
corresponds to a larger coefficient for the linear term in the denominator of our transfer 
function.  Having a larger linear term coefficient results in b2 – 4ac > 0, which means that 
we will have two real poles in our transfer function.  These roots will always be negative, 
which means that the filter will also always be stable (recalling from control system 
theory that when all poles are less than 0, the system will be stable).  Also, this type of 
transfer function can be realized with the cascade of two first-order filters. 
Finally, lets find when the equation in Fig. 34.45 is valid.  It states in the discussion 
above the figure that the equation is only valid when Q is greater than 0.707.  This is 
because the filter will only experience peaking when Q is greater than this value.  This 
corresponds to the frequency at which the peaking will occur if Q is higher than that 
value.  Since no peaking occurs for Q<0.707, this equation is not valid and thus doesn’t 
apply.  Notice that if we make Q very high, Fmax will approach f0. 

mailto:curtis_cahoon@ieee.org
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Problem 35.23 
 
Compare the size of the elements used in Exs. 35.11 and 35.12. Is there a benefit to using an 
active element for monolithic implementation? 
 
 
 
          Yes, using active-RC biquad filter (Ex 35.12) is easier for the monolithnic 
implementation. As shown in the Ex. 35.12, it only need to set CI1=CI2=0,   CF1 = 
CF2=10pF , and RI2=RF2=10k . These capacitors and resistors are typical values and easy 
to fabricate in a CMOS process. However, for LRC circuit shown in Ex 35.11, having the 
similar frequency characteristic, we need to make C=100pF, L=100uH, and R=1.4K. 
Both C and L are relatively big for any standard CMOS process. For example, in a given 
process, the thickness between metal1 and substrate is 1.5um, for a 1 um-wide piece of 
metal, the inductance is 
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         In order to get L=100uH, we need to place166, 666 um-long metal1 on the chip. 
This is impossible to manufacture.  So, the big benefit of active –RC filter over the LRC 
filter is reducing the value of the elements. 
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Chapter 35.24 

Show, using the simulations from Ex35.17 that increasing the switch resistance, and 
thus the spectral content present in a switched capacitor circuit, can help to stabilize 
high-Q switched-capacitor bandpass filters. 

 
[Answer]:  Simulations results indicate that indeed high-Q switched-capacitor bandpass filter 

gets improvement on stability gradually when switching resistance increases. The 
following simulations were based on configuration of Fig35.58. (Green line is output). 

  
 Further analysis is provided in next page. 
 

Switching Ron=100 ohm 

 
 

Switching Ron=1k ohm 

 
 

Switch Ron=2k ohm 

 
 

Switch Ron=20k ohm 

 



 
[Analysis]:  There are several effects by increasing switching resistance.  

1). Bigger switching resistance imposes lossy line throughout circuit; voltage drops on 
switches help to reduce positive feedback gain when filter is unstable and oscillating; 
2). Bigger switching resistance reduces the switching noise, smoothes voltage abrupt 
changes (higher frequency components) when on/off. 
3). Bigger Switching resistance results in larger time constant at each switching 
operation. Output would be attenuated at initial cutoff frequency (fo) instead of 
oscillating.   

 
Moreover, it leads to another key impact:  

Bandpass filter Cutoff frequency (fo) is decreased as switching resistance increase; 
further helps poles move away from right-hand plane after oscillation. 

 
fo = 1/2π sqrt(1/CF1RI2CF2RF2) drops as RI2 and RF2 increase.  

 
[Simulation]:  Due to the fact that this circuit can only be simulated using a transient analysis, 

we will input a sinewave at a known frequency and verify we get the desired output.
  

 Switching resistance Ron=100 ohm, input frequency = 1.52MHz = f3dB initially 
 

 
 Switching resistance Ron=10k ohm, same input frequency =1.52MHz  

 
Clearly, same input signal gets attenuated after switching resistance increase to 10k from 100. 
Therefore, cutoff frequency fo dropped as switching resistance increase. 
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Chapter 35.25 

Redesign and simulate the operation of the filter discussed in Ex35.17, with a Q of 5, 
while trying to minimize the difference between CI1 and CF2. Suggest a possible 
modification to the filter topology (similar to how we add G2Q in Figure 35.54) to 
reduce this component spread. 
 

[Answer]:   
We will re-design the system to minimize the difference between CI1 and CF2 after    adding 

RF1Q as High-Q compensation.  
 

As in Example 35.17 suggested params are as following Q=20 fo = 1.59MHz: 
CI 1   = 0.4pf  CF1      =  2pf  CF2 = 5pf CI 21 =  0.2pf    
CI 21Q =  0.19pf CI 12=   0.125pf CI 22 = 0.8pf 

  
Re-design:  Bandpass filter design key parameters:  (fs = 100MHz) 
 1). Q = RF1∙sqrt(CF1/RI2CF2RF2) = sqrt(CI 12 CI 22 CF1/CF2) /CI 21  = CF1 /10(CI 21-CI 21Q) 

with  RF1 = 1/(CI 21 fs)    
RI2 = 1/(CI 12 fs)   
RF2 = 1/(CI 22 fs) 

2). fo = 1/{2π sqrt(1/CF1RI2CF2RF2)} = fs/{2π sqrt(CI 12CI 22 /CF1CF2)} =1.59MHz 
 Æ CI 12CI 22 /CF1CF2 = 0.01 
3). Passband Gain Av = 1  

a1 = 2πfo/Q = CI 1/RI2CF1CF2  = 2π∙1.59MHz/Q = 1/RF1CF1 
Æ CI 1 CI12 fs /CF1CF2  = CI 21 fs / (CF1Q)=10x106 /Q  or  
Æ CI 1 CI12  /CF1CF2  = CI 21 / (CF1Q)=0.1/Q 

 
In summary:  CI 1 CI12  /CF1CF2  = CI 21 / (CF1 Q) = 0.1/Q  = 0.01CI 1 /CI 22  

Æ CI 1  = 10 CI 22/Q    (determined by Q, fs, fo) 
Æ CI 12CI 22 /CF1CF2 = 0.01 (determined by fs, fo) 
Æ CI 21 = 0.1 CF 1    (determined by fs amd fo) 

 
Design Q to drop from 20 to 5 while keep fo @ 1.59MHz and Av=1 by setting 
CI1=1.6pf, CI12 = 0.25pf as twice larger than that of Q=20 for a1;  
CI 21 = 0.6pf and CI 21Q =  0.48pf, CF 1 = 4pf, CI 22 = 0.8pf for Q with the consideration 
of minimize the difference between CI1 and CF2 . (Now CI1= 1.6pf and CF2 = 5pf) 

 
Further discussion:  
1). CI1 can be brought further close to CF2 at the price of sacrificing CF1 if 
maintaining same fs, fo, and Q. 
2). Determined by Q, fs, and fo, CI 1  should be twice larger than CI 22 when Q=5, 
fs=100MHz, fo=1.59MHz, it explained the reason why Figure 35.59 simualtion 
indicated that Q=11.36 @page443 in textbook.  



Simulations:  
 

(Simulation case for fo and Passband Gain Av) 
Simulation1 indicates: fo~=1.595MHz, Av =1 as desired 

 
 

(Simulation case for f3dB and Q) 
Simulation2 indicates f3dB BW = [1.45MHz, 1.75MHz] as compared to 1.43MHz as 
designed. Results in Q~= 5.6 vs ideal target Q=5  
 

Simulations indicate that f3dB points @1.45MHz or 1.75MHz 

 
 

 
 
f3dB point zoom in 

  
 



Suggest Topology: 
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Simulation Scripts—SPICE 
 
*Problem 35.25 temp-sol CMOS: Mixed-Signal Circuit Design --Yantao Ma* 
 
*WinSPICE command scripts 
*#destroy all   
*#run  
*#plot Vinps-Vinms Voutp-Voutm 
.tran 1n 10u 8u 1n UIC 
 
*Input power and references 
Vtrip Vtrip 0 DC 0.75 
VCM VCM 0 DC 0.75 
 
*Input Signal 
Vinps    Vinps   0 DC 0 Sin 0.75  500m 1.45MEG 
Vinms    Vinms   0 DC 0 Sin 0.75 -500m 1.45MEG 
 
*Clock Signals 
Vphi1  phi1  0 DC 0  Pulse 0 1.5   0    200p  200p  4n 10n 
Vphi2  phi2  0 DC 0  Pulse 0 1.5   5n   200p  200p  4n 10n 
R2 phi1 0 1MEG 
R3 phi2 0 1MEG 
 
S1top1  Voutm1 N1  phi1 VTRIP switmod 
S2top1  N1   VCM  phi2 VTRIP switmod 
Citop21 N1  N3 0.6p 
Citp21Q N1 N2 0.48p 
S3top1 VCM N2 phi1 VTRIP switmod 
S4top1 N2 Vinm1 phi2 VTRIP switmod 
Citop1  Vinps   Vinm1  1.6p 
Cibot1  Vinms   Vinp1  1.6p 
S1bot1  Voutp1 N4  phi1 VTRIP switmod 
S2bot1  N4   VCM  phi2 VTRIP switmod 
Cibot21 N4  N2 0.6p 
Cibt21Q N4 N3 0.48p 
S3bot1 VCM N3 phi1 VTRIP switmod 
S4bot1 N3 Vinp1 phi2 VTRIP switmod 
 
Cftop1 Voutm1  Vinm1 4p 
Cfbot1 Voutp1   Vinp1 4p 
 
*Use a VCVS for the op-amp 
E11 Voutm1 VCM Vinp1 Vinm1 200MEG 
E21 VCM Voutp1 Vinp1 Vinm1 200MEG 
 
S1top2  Voutp N5 phi1 VTRIP switmod 
S2top2 N5 VCM phi2 VTRIP switmod 
Citop22 N5 N2 0.8p 
S3top2  Voutm1 N6 phi1 VTRIP switmod 
S4top2 N6 VCM phi2 VTRIP switmod 
Citop12 N6 N8 0.25p 
S5top2 VCM N7 phi1 VTRIP switmod 
S6top2 N7 Vinm2 phi2 VTRIP switmod 
S1bot2  Voutm N10 phi1 VTRIP switmod 
S2bot2 N10 VCM phi2 VTRIP switmod 
Cibot22 N10 N3 0.8p 
S3bot2  Voutp1 N9 phi1 VTRIP switmod 
S4bot2 N9 VCM phi2 VTRIP switmod 
Cibot12 N9 N7 0.25p 
S5bot2 VCM N8 phi1 VTRIP switmod 
S6bot2  N8 Vinp2 phi2 VTRIP switmod 
 
Cfp2 Voutp Vinm2 5p 
Cfm2 Voutm Vinp2 5p 
 
*Use a VCVS for the op-amp 
E12 Voutp VCM Vinp2 Vinm2 200MEG 
E22 VCM Voutm Vinp2 Vinm2 200MEG 
 
.model switmod SW RON=100 

.end 



Problem 35.26 
 
Derive the transfer function of the transconductor-C biquad shown in Fig. 35.63. Can this filter be 
orthogonally tuned? If so how? 
 
 
      The figure below shows implementation of a biquad filter using transconductors 
without crossing wires. Signals are summed using current.  
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        Lets sum the currents at the Vout1+ first, 
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           where Vout+= -Vout-,   Vout1+= -Vout1- and Vin+ = -Vin-. Also, 
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       Summing the currents at Vout+, 
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            The transfer function of the biquad is given by, 
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       This filter can be orthogonally tuned. The pole and zero could be adjusted by 
changing each transconductor’s gm independently. For instance, G1/G3 can be tuned by 
changing gm1, G2/G5 can be adjusted by changing gm2 and gm4, and G6/G4 can be tuned by 
changing gm3.   
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Problem 35.27 
 
How would a “high-Q” biquad be implemented using transconductors?  Repeat Ex. 35.15 
using the transconductor based biquad. 
 
Solution 
 
On page 446 we can see the schematic for the transconductor-C implementation of a 
biquadratic transfer function.  The discussion on how to transform the standard active RC 
biquad filter into a practical “high-Q” design is on page 438.  In this discussion we work 
with a simplified form of our filter, assuming that it will either have a bandpass or 
lowpass response.  In order to do this, we assume that the gain G6 from the standard 
equation derived for a biquad response is equal to zero.  This is equivalent to removing 
C3 from our schematic.  In the modified biquad filter, C3 = 0. 
 
We can now refer to equation 35.96 and the gain equations under the schematic on page 
446 to compute the transfer function for this filter.  Before this is done, however, 
remember that we need an easy way to make this a “high-Q” filter without making our 
gain G2 too small to be practically implemented.  In the filter shown in the discussions on 
pages 438-439, this gain is implemented using an extra positive feedback resistor (RF1Q) 
around the first op-amp.  This allows a current to be subtracted from the current flowing 
through the resistor (RF1), and allows the resistors to be smaller, comparable in 
magnitude to the other resistors.  The values for these resistors are obtained by 
multiplying the gain G2 by (Q-1)/Q, and subtracting that new gain G2Q from G2 and 
substituting it into our original equation.  This can be performed easily by multiplying the 
gain gm2 by (Q-1)/Q.  Below are the equations showing how we plug in our gains, and 
finally our simplified transfer function that we will use in the second part of this problem.   
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The way we can implement this filter is to put an extra transconductor in parallel with gm2 
called gm2Q except the input terminals of the transconductor are switched to subtract from 
the current being fed back by gm2.  In this way, we can make gm2 have any value we want 
as long as we make gm2Q the right size using the following equation: 
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This eliminates the problem of large component spread that can be a problem in the 
design of a “high-Q” filter.  The extra transconductor is attached around gm2 in the 
following way. 
 

 
 
Ex. 35.15 reads the following: 
Use an active-RC filter (In our case a transconductor-C filter) to implement a filter with 
the response shown in Fig. 35.51 (where Q is equal to 20). 
 
In order to do this, we need to make the constant term in our transfer function equal to 
zero.  If we look at the equation above, we see that this can be done with the elimination 
of the transconductor gm1.  The simplified transfer function is shown below.  
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Now we can follow the same approach used in example 35.15 to determine our values for 
gm2, gm3, gm4, C1, C2, and C4.  Since we want the passband gain to be equal to one, the 
center frequency equal to 1.59 MHz, and Q equal to 20, we can form the following 
equation to determine our values. 
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To simplify things, gm2 = gm3 = gm4 = 10uA/V.  With a Q equal to 20, this means that our 
transconductor gm2Q will have a value of 9.5uA/V.  Solving the other equations gives us 
values of  C1 = 0.05pF, C2 = 0.95pF, and C4 = 1pF.  This gives us values that are all close 
to the same values.  If we were more concerned about matching capacitor values, we 
could set the capacitor values first and recalculate the capacitor values. 



 Solution for 35.28  by Sugato Mukherjee  e-mail:msugato@ieee.org 
 
Q:  Repeat Ex. 35.13 using a digital filter. 
 
Ans: We have to design a digital bandpass filter with center frequency fo = 1.59MHz and 
Q=0.707. This can be done with the digital biquad filter whose general form is shown in 
Figure 35.64. The general form  (s-domain) of the second order bandpass filter is given 
by 
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Looking at equations 35.111 to 35.116 we can write that 
a2=B0=0 
a0=0 => (B0+ B1+ B2) = 0 => B1= - B2 
a1=fs B1 

   Let us take the sampling frequency fs to be 100MHz which is much above the required 
center frequency of 1.59MHz so that equation 35.110 holds true. 
  Now we need to compute the coefficients A1, A2 and B1 in accordance with our filter 
specifications.  

Using equation 35.115 we have for our filter )2(
100707.0
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×
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which  gives A1=1.859 
Using the value of A1 in equation 35.116 we get 
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)59.1(2859.11 2

π=−− A  which gives A2 = -0.869 

a1=fs B1 decides the “pass-band gain” of the filter. Putting s=jω in (1)  and evaluating the 
magnitude of the transfer function at ω=ω0=2πf0 we get 
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Taking our pass-band gain as 10, putting the values of a1, ω0 and Q we get  
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Thus we have all the design parameters needed for the band-pass filter. The filter netlist 
and the simulation results are shown next. For SPICE simulation, transmission lines are 
used as the delay elements and voltage-controlled-voltage-sources are used for the 
multipliers and adders. Note that we get our desired band-pass function only for input 

signal frequencies lower than  approximately 
2
sf  = 50MHz. For higher input signal 

frequencies , equation 35.110 is not valid.  
 
 
 



Netlist used in simulation 
 
* Solution for 35.28* 
 
.AC DEC 100 10k 200MEG 
 
*WinSPICE command scripts 
*#destroy all   
*#run  
*#set units=degrees 
*#plot db(vout) ylimit 25 -25 
 
Vin     Vin    0  DC 0  AC 1 
 
*Adders 
Eadd1  Voadd1  0    Vin   Voadd2  1 
Eadd2    0   Voadd2  Voa1   Voa2   1 
Eadd3    Vout    0   Vob1  Vob2    1 
 
*Delays using transmission lines and terminations 
TZ1 Vod1 0 Voadd1 0 TD=10n ZO=50 
RZ1 Vod1 0 50 
*Add buffer to ensure that the two delays don't load each other 
Ebuf1 Vod11 0 Vod1 0 1 
TZ2 Vod2 0 Vod11 0 TD=10n ZO=50 
RZ2 Vod2 0 50 
 
*Multipliers 
EB2  Vob2  0  Vod2 0 1.413 
EB1  Vob1  0  Vod1 0 1.413 
EA1 Voa1 0 Vod1 0 1.859 
EA2 Voa2 0 Vod2 0 0.869 
 
*Put load resistors in to avoid floating nodes 
RL Vout             0 1G 
Radd1 Voadd1 0 1G 
Radd2 Voadd2 0 1G 
Roa1 Voa1             0 1G 
Roa2 Voa2             0 1G 
 
.end 
 
 
 
 
 



 
The above figure shows the magnitude plot for the frequency response of the digital 
band-pass filter. Note that the gain at the center frequency is ~10 (=20dB). 













Problem 35.30 
Jake Anderson 

janderson@boisestate.edu 
 

Show, using biquad sections, how the following lowpass ladder filter would be 
implemented. 
 
 

 
 

Fig 35.76 
 
To implement biquad sections for Fig 35.76,  the stages can be broken up in to three 
sections. Each section will have a transfer function that can be implemented using a 
biquadratic filter. The three sections of the filter are shown below in Fig1. 

 
Fig 1 

 
Each stage has a transfer function (H1, H2, and H3) that can be implemented with a 
biquadratic filter. 
 
The transfer functions and Q’s are: 
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The second transfer function, H2, is the same as the H1 but the input resistance, R2,  is 0. 
This gives the transfer function shown below and a Q of infinity. 
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problem 35.30 continued… 
 

• Implementation of a biquad section for H1 
The thing to do is compare the biquad transfer function, equation 35.80, with the desired 
transfer function to easily see what the biquadratic transfer function components need to 
be. This is shown below. 
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Comparing the biquadTF1 with H1 it is easy to see that, 
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• Implementation of a biquad section for H2 
Using the same approach, 
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looking above, it is easy to see that, 
012 == aa   22/1 CLao =   ( ) 22
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, which occurs because for this section, remember, Q2 is infinite. 

 
• Implementation of a biquad section for H3 
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and it can be seen that the components for this biquad filter will be, 
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As we read in pages 429-448 of the book, Biquadratic Filters can be made by using 
Active-RC implementation, Switched-Capacitor implementation, Transconductor-C 
implementation, or digitally.  
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35.31) Show how to implement the multipliers used in Ex. 35.20. 
 
Soln: 
 
The block diagram with the multipliers needed to implement is shown: 
 
 
 
 
 
 
 
 
 
 
We can see that we need to implement multipliers with the following values of 1.75, 
0.78125 and 0.03125. 
 
For A1=1.75,          1.75=1*(2) - 0.25 
      A2=0.78125,  0.78125=1 - 0.125 + .03125 
      A3=0.03125 we will simply shift the word to the right five times 
 
The implementation with one adder is shown for A1    
 
    
 
 
 
 
Following step-by-step through the adder we get: 
Input   1 
Multiply by 2  2      (add a zero to the two’s complement of the input) 
Multiply by 0.25 0.25 (shift to the right by 2) 
Subtract 2 – 0.25         =1.75 
 
 
 
We can do the same for the next multiplier, the implementation with two adders is shown 
for A2. 
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Following step-by-step through the adder we get: 
Input         1 
Subtract by 0.25       0.75         
Multiply by 0.01325       0.03125  (shift word to the right five times) 
Add 0.75 + 0.03125       0.78125 
 
For the A3 multiplier we can simply shift the word to the right five times before passing it 
on to the output. 
 
 
 
 



Solution by: 
Curtis Cahoon 
curtis_cahoon@ieee.org 
 
Problem 35.32 
Show that the filter shown in Fig. 35.77 can be implemented using a single multiplier. 
 
Solution 
First of all, let’s take a look at the figure. 
 

 
 
Now let’s eliminate the feedback loop, using the basic feedback equation where G(z) is 
the forward gain, and H(z) is the feedback gain. 
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Using this equation, and multiplying the entire equation by A (the gain at the output of 
the filter) we obtain the following transfer function. 
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Now if we divide both the numerator and denominator by the quantity 1-z-1, we obtain 
the following equation for our transfer function. 
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If we examine this equation closely, we find that this can be interpreted as an equation of 
the form of (EQ. 1) above, where G(z)=Az-1/(1-z-1), and H(z)=1.  This means we can 
draw a block diagram of the filter where the multiplier (A) is in the loop, with an 
additional forward gain of z-1/(1-z-1), with a unity feedback.  This drawing is shown 
below, with an alternative representation to the right of it.  Notice that both 
implementations are equivalent, and both implement a single multiplier with a gain of A. 
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Problem 35.33 
 
Show how the output of a single-bit, noise-shaping modulator would be multiplied by 1.9375. 
Make sure that the detail on converting the modulator’s output to two’s complement is show. 
 
   
    This multiplier can be implemented using a single adder along with the associated 
multiplication factors as shown below, 
 
 
 
 

2

0.0625

+In Out
-

 
 
 
 
 
                                              A=1.9375= 2 –0.0625 
 
 
      For example, suppose the output of a single-bit, noise-shaping modulator is 1.  To 
begin the multiplying, simply change the output into a two’s complement number, 
  

1 ->  01 
 
     To multiply a word by 2, we just simply add a zero to the end of the word, 
 
                                01 - >  010 
 
     To multiply by 0.0625, simply insert four zeros in between the sign-bit and remaining 
part of the word (when the word is positive), 
 

01 - >  000 001 
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