Brief Contents

Chapter 1 Signals, Filters, and Tools 1
Chapter 2 Sampling and Aliasing 27
Chapter 3 Analog Filters 73
Chapter 4 Digital Filters 119
Chapter 5 Data Converter SNR 163
Chapter 6 Data Converter Design Basics 203
Chapter 7 Noise-Shaping Data Converters 233
Chapter 8 Bandpass Data Converters 285
Chapter 9 A High-Speed Data Converter 301
Contents

Preface

<table>
<thead>
<tr>
<th>Chapter 1 Signals, Filters, and Tools</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Sinusoidal Signals</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 The Pendulum Analogy</td>
<td>1</td>
</tr>
<tr>
<td>Describing Amplitude in the x-y Plane</td>
<td>3</td>
</tr>
<tr>
<td>In-Phase and Quadrature Signals</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 The Complex (z-) Plane</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Comb Filters</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 The Digital Comb Filter</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2 The Digital Differentiator</td>
<td>14</td>
</tr>
<tr>
<td>1.2.3 An Intuitive Discussion of the z-Plane</td>
<td>15</td>
</tr>
<tr>
<td>1.2.4 Comb Filters with Multiple Delay Elements</td>
<td>17</td>
</tr>
<tr>
<td>1.2.5 The Digital Integrator</td>
<td>19</td>
</tr>
<tr>
<td>The Delaying Integrator</td>
<td>20</td>
</tr>
<tr>
<td>An Important Note</td>
<td>21</td>
</tr>
<tr>
<td>1.3 Representing Signals</td>
<td>21</td>
</tr>
<tr>
<td>1.3.1 Exponential Fourier Series</td>
<td>22</td>
</tr>
<tr>
<td>1.3.2 Fourier Transform</td>
<td>23</td>
</tr>
<tr>
<td>Dirac Delta Function (Unit Impulse Response)</td>
<td>23</td>
</tr>
</tbody>
</table>
Chapter 2 Sampling and Aliasing 27

2.1 Sampling ... 28
 2.1.1 Impulse Sampling 28
 A Note Concerning the AAF and the RCF 30
 Time Domain Description of Reconstruction 31
 An Important Note 33
 2.1.2 Decimation 33
 2.1.3 The Sample-and-Hold (S/H) 35
 S/H Spectral Response 35
 The Reconstruction Filter (RCF) 39
 Circuit Concerns for Implementing the S/H 39
 An Example 40
 2.1.4 The Track-and-Hold (T/H) 41
 2.1.5 Interpolation 43
 Zero Padding 44
 Hold Register 46
 Linear Interpolation 49
 2.1.6 K-Path Sampling 50
 Switched-Capacitor Circuits 51
 Non-Overlapping Clock Generation 53

2.2 Circuits ... 54
 2.2.1 Implementing the S/H 54
 Finite Op-Amp Gain-Bandwidth Product 55
 Autozeroing 57
 Correlated Double Sampling (CDS) 59
 Selecting Capacitor Sizes 61
 2.2.2 The S/H with Gain 61
 Implementing Subtraction in the S/H 63
 A Single-Ended to Differential Output S/H 65
 2.2.3 The Discrete Analog Integrator (DAI) 66
 A Note Concerning Block Diagrams 68
 Fully-Differential DAI 69
 DAI Noise Performance 70

Chapter 3 Analog Filters 73

3.1 Integrator Building Blocks ... 73
 3.1.1 Lowpass Filters 73
 3.1.2 Active-RC Integrators 75
Chapter 3 Analog Filters

3.1 Integrators

- **3.1.3 MOSFET-C Integrators**
- **3.1.4 g_m-C (Transconductor-C) Integrators**
- **3.1.5 Discrete-Time Integrators**
- **An Important Note**
- **Exact Frequency Response of an Ideal Discrete-Time Filter**

3.2 Filtering Topologies

- **3.2.1 The Bilinear Transfer Function**
- **3.2.2 The Biquadratic Transfer Function**

Chapter 4 Digital Filters

4.1 SPICE Models for DACs and ADCs

- **4.1.1 The Ideal DAC**
- **4.1.2 The Ideal ADC**
- **4.1.3 Number Representation**
 - Increasing Word Size (Extending the Sign-Bit)
 - Adding Numbers and Overflow
 - Subtracting Numbers in Two's Complement Format

4.2 Sinc-Shaped Digital Filters

- **4.2.1 The Counter**
- **4.2.2 Lowpass Sinc Filters**
 - Averaging without Decimation: A Review
Cascading Sinc Filters 132
Finite and Infinite Impulse Response Filters 133
4.2.3 Bandpass and Highpass Sinc Filters 134
 Canceling Zeroes to Create Highpass and Bandpass Filters 134
Frequency Sampling Filters 138
4.2.4 Interpolation using Sinc Filters 139
 Additional Control 142
 Cascade of Integrators and Combs 142
4.2.5 Decimation using Sinc Filters 143
4.3 Filtering Topologies ... 145
 4.3.1 FIR Filters 145
 4.3.2 Stability and Overflow 146
 Overflow 147
 4.3.3 The Bilinear Transfer Function 148
 The Canonic Form (or Standard Form) of a Digital Filter 151
 General Canonic Form of a Recursive Filter 154
 4.3.4 The Biquadratic Transfer Function 155
 Comparing Biquads to Sinc-Shaped Filters 157
 A Comment Concerning Multiplications 158
Chapter 5 Data Converter SNR 163
 5.1 Quantization Noise ... 163
 5.1.1 Viewing the Quantization Noise Spectrum Using Simulations 164
 Bennett's Criteria 165
 An Important Note 166
 RMS Quantization Noise Voltage 166
 Treating Quantization Noise as a Random Variable 168
 5.1.2 Quantization Noise Voltage Spectral Density 169
 Calculating Quantization Noise from a SPICE Spectrum 171
 Power Spectral Density 172
 5.2 Signal-to-Noise Ratio (SNR) 173
 Effective Number of Bits 173
 Coherent Sampling 175
 Signal-to-Noise Plus Distortion Ratio 176
 Spurious Free Dynamic Range 177
Dynamic Range 177
Specifying SNR and SNDR 178
5.2.1 Clock Jitter 178
Using Oversampling to Reduce Sampling Clock Jitter 181
Stability Requirements 181
A Practical Note 182
5.2.2 A Tool: The Spectral Density 182
The Spectral Density of Deterministic Signals: An Overview 183
The Spectral Density of Random Signals: An Overview 185
Specifying Phase Noise from Measured Data 189
5.3 Improving SNR using Averaging 190
An Important Note 191
5.3.1 Using Averaging to Improve SNR 192
Ideal Signal-to-Noise Ratio 194
5.3.2 Linearity Requirements 194
5.3.3 Adding a Noise Dither 195
5.3.4 Jitter 198
5.3.5 Anti-Aliasing Filter 198
5.4 Using Feedback to Improve SNR 199

Chapter 6 Data Converter Design Basics 203
The One-Bit ADC and DAC 204
6.1 Passive Noise-Shaping 205
6.1.1 Signal-to-Noise Ratio 208
6.1.2 Decimating and Filtering the Modulator's Output 209
SNR Calculation using a Sinc Filter 211
6.1.3 Offset, Matching, and Linearity 212
Resistor Mismatch 213
The Feedback DAC 213
DAC Offset 214
Linearity of the First-Order Modulator 214
Dead Zones 215
6.2 Improving SNR and Linearity 215
6.2.1 Second-Order Passive Noise-Shaping 216
6.2.2 Passive Noise-Shaping Using Switched-Capacitors 218
6.2.3 Increasing SNR using K-Paths 220
Revisiting Switched-Capacitor Implementations 224
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Conclusion</td>
<td>322</td>
</tr>
<tr>
<td>Index</td>
<td>325</td>
</tr>
</tbody>
</table>