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What is a Delta-Sigma ADC

m Known by various names such as Sigma-Delta ADC,
Delta-Sigma ADC, over-sampling ADC, noise-shaping
ADC, 1-bit ADC

m Name comes from the architecture of the modulator
which integrates (Sigma) the difference (Delta) between
the input and the quantized output

Sigma-Delta Modulator

+ 1-bit
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Architecture
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m Sigma Delta ADC consists of an analog modulator
followed by a digital low pass filter
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Benefits
m No precision matched analog components
required

m Can achieve high resolutions

Drawbacks
m Slower conversion time
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Simple Modulator

Comparator used as 1-bit ADC

Capacitor provides integration /
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due to Ohms law (V=IR)

Currents summed to form difference \

(feedback is inverted)
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Inverter used as 1-bit DAC
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Simulation of Modulator — sim1

Output is high majority of time when input is high
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Feedback 2
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m Feedback tries to hold the voltage across the capacitor at Vcm

m For the voltage across the capacitor to remain constant,
there must be zero net current into the capacitor

m For there to be zero net current into the capacitor, the feedback
current must be equal and opposite to the input current

m The feedback voltage (converted to a current) can only take on
one of two levels, it cannot exactly match —Vin

m The duty cycle of the feedback is varied so the average voltage
(current) feedback is equal and opposite to the input
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Measurement
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m |f we use a counter on the output, we can measure the duty cycle

of the feedback which is equal to the input.

m |f we measure for a longer period of time, we get more accuracy.
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Error caused by modulator ripple
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m Ripple on Vint causes non-linear voltage to current conversion
resulting in distortion and limiting achievable accuracy



Eliminating ripple on simple modulator — sim2

Input voltage held
constant at Vcm
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Output of integrator
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/

Vint

VCM

" vDD
Ideal comp.

/VDD

SEOSTATE

Vout
L

Clk

X
clk

m Use an active integrator to hold input voltage constant

m Charge transferred to integration capacitor is the difference in input
current minus the feedback current integrated over one clock period
Q= (lin-1fb)*t

= (Vin-Vout)/R * t
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Switched capacitor modulator — sim3
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m Difference in voltages between input and feedback is converted to
a charge Q=C*(Vin-Vfb), instead of a current I=(Vin-Vfb)/R that
was integrated over one clock period to form a charge Q = I*t.
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Low Pass Digital Filter

Simple Counter — used as low pass averaging filter

accumulator/counter

——————————————————————————————————

IN —P?—V reg —> reg —» OUT

counter

- Increasing length of counter increases resolution,
but reduces output data rate
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Simulation results

6-bit accumulate & dump — sim4
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Z- Transform 7= =g s

Running average filter

yin] =Xn[+Xxn-1+xn-2]+..+Xn-(K -1

z-Transform of running average filter . 1

Y(2) = X(2)+z +z2+..+27% D) G =

Y(2) _1-ZF

1(2)= X(z2) 1-7°
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Evaluating frequency response of
transfer function
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Freguency response of sinc-shaped filters

Low pass
filter response
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Figure 4.13 Lowpass Sinc-response filters with varying values of K.
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Attenuation of sinc-shaped filters

K
H(z)= % HCN) Sinc(Kn %)
. |H(f)] = :
Sinc(:r: }9

See Fig. 2.30
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Figure 4.10 Frequency response of a Sinc-shaped digital filter.

Main lobe
First sidelobe

Approaches limit
as K -> large
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Figure 2.30 Attenuation versus K.
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Cascading sinc-shaped filters
K L
H(2) = 1-2z )
1- |
_ _ Attenuation depends on how
many stages are cascaded
o A =LY

B=0.5(f,/K) —]
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Figure 4.17 General frequency response of a lowpass Sinc (averaging) filter.
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Implementing cascaded sinc filters
with decimation
1-7%7
H(2 :L—z'l}
=[l+z'+z°+...+Z27°]"
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2L (4.34) [3]

Can be implemented by cascading averagers with clock dividers

log, K stages
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Figure 4.32 Decimation using Sinc anti-aliasing filters.
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Simulation results

cascade of averagers — 18t order sinc — simb

BV ¥[mod] V1 wint] V(1 :wem)
5V ' ' s ' ' NSRS SO —
av 1 1 4 — L

. i1 .
Ml = I

ov ML I | T R |

-1¥
b0V

4.5V
4.0V
3.5V
3.0V
2.5V--1-
2.0¥—-
1.5¥—-
1.0¥—-

0.5Y—-

0.0¥ | f f f | f f T | f f |
Ops 2|15 4s Gs L TES 10ps 12s 14ps 16ps 16ps 20ps 22|s 24ps




"

Simulation results

cascade of averagers — 28t order sinc — sim6
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